The short and long-term relationship between global uncertainty factors and BIST sector indices
Published 2024-03-25
Keywords
- Global Belirsizlik Faktörleri, BİST100, BİST Sektör Endeksleri
- Global Uncertainty Factors, BIST100, BIST Sector Indices
How to Cite
Copyright (c) 2024 Zekeriya Oğuz Seçme
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
Abstract
Recent empirical studies have found that behavioural biases can influence investor decisions. Global events and changes can also affect investor biases and, consequently, investor decisions. Therefore, it is interesting to see how changes in global uncertainty factors affect BIST100 and BIST sector indices and in what direction they move investor behaviour. This study aims to reveal the short- and long-term asymmetric effects of global uncertainty factors on sector indices using the NARDL (Nonlinear Autoregressive Distributed Lag) model. Implicit volatility indices that measure economic, geopolitical, energy, and financial risks are used to represent global uncertainty factors. The results show that changes in global uncertainty factors have asymmetric effects on the BIST100, Information Technology, Stone & Earth, Basic Metals, Tourism and Services sector indices in the long term. In the short term, it was determined that three uncertainty factors impact the Construction, Basic Metals, Technology and Paper sector indices, except for the SME index, while all uncertainty factors significantly impact all other sector indices. In general, both the BIST100 and all sector indices other than SMEs are affected by changes in uncertainty factors. It has been concluded that this effect's direction and magnitude differ in different sectors.
References
- Apergis, N., & Lake, A. (2010). Credit default swaps and stock prices: further evidence of mean and volatility transmission using a MVGARCH-M Model. China-USA Business Review, 9(11), 1-22.
- Baker, S. R., Bloom, N., & Davis, S. J. (2016). Measuring economic policy uncertainty. The quarterly journal of economics, 131(4), 1593-1636.
- Barberis, N., Shleifer, A., & Vishny, R. (1998). A model of investor sentiment. Journal of financial economics, 49(3), 307-343.
- Bekar, E. (2022). The Relationship Between Geopolitical Risks and Housing Returns in Türkiye: Evidence from the Cross-Quantilogram. International Econometric Review, 14(2), 59-71.
- Bektur, Ç., & Malcıoğlu, G. (2017). Kredi temerrüt takaslari ile BİST 100 Endeksi arasindaki ilişki: Asimetrik nedensellik analizi. Bolu Abant İzzet Baysal Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 17(3), 73-83.
- Brogaard, J., & Detzel, A. (2015). The asset-pricing implications of government economic policy uncertainty. Management science, 61(1), 3-18.
- Caldara, D., Cavallo, M., & Iacoviello, M. (2019). Oil price elasticities and oil price fluctuations. Journal of Monetary Economics, 103, 1-20.Camgöz, M. (2022). Global Belirsizlik Faktörlerinin BIST Hisse Senedi Fiyatlarına Asimetrik Etkilerinin NARDL Modeliyle Analizi. Maliye ve Finans Yazıları, (118), 71-100.
- Camgöz, M. (2022). Global Belirsizlik Faktörlerinin BIST Hisse Senedi Fiyatlarına Asimetrik Etkilerinin NARDL Modeliyle Analizi. Maliye ve Finans Yazıları, (118), 71-100.
- Camgöz, M. (2023). Global Emtia Endeksi ile Bist Sektör endeksleri arasındaki asimetrik ilişkiler: Yerel ve Uluslararası Yatırımcılar için Çıkarımla. Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 25(2), 580-598.
- Čižmešija, M., Lolić, I., & Sorić, P. (2017). Economic policy uncertainty index and economic activity: what causes what? Croatian Operational Research Review, 563-575.
- Dai, P. F., Xiong, X., & Zhou, W. X. (2021). A global economic policy uncertainty index from principal component analysis. Finance Research Letters, 40, 101686.
- Daniel, K., Hirshleifer, D., & Subrahmanyam, A. (1998). Investor psychology and security market under‐and overreactions. the Journal of Finance, 53(6), 1839-1885.
- Değirmenci, N., & Pabuççu, H. (2016). Borsa İstanbul ve Risk Primi Arasindaki Etkileşim: VAR ve NARX Model. The Journal of Academic Social Science, 4(35), 248-261.
- Engle, R. F., & Granger, C. W. (1987). Cointegration and error correction: representation, estimation, and testing. Econometrica: journal of the Econometric Society, 251-276.
- Erdoğan, L., Ceylan, R., & Abdul-Rahman, M. (2022). The impact of domestic and global risk factors on Turkish stock market: Evidence from the NARDL approach. Emerging Markets Finance and Trade, 58(7), 1961-1974.
- Evci, S. (2020). Kredi Temerrüt Swapları İle Borsa İstanbul Arasındaki Eşbütünleşme İlişkisinin Analizi. İktisadi ve İdari Bilimler Dergisi, 2, 1-100.
- İltaş, Y., & Güzel, F. (2021). Borsa Endeksi ve Belirsizlik Göstergeleri Arasındaki Nedensellik İlişkisi: Türkiye Örneği. Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 39(3), 411-424.
- Johansen, S. (1988). Statistical Analysis of Cointegration Vectors. Journal of Economic Dynamics and Control, 12(2-3), 231–254.
- Kaderli, Y., & İltaş, Y. (2021). Türkiye CDS Primi ile Borsa Sektör Endeksleri Arasındaki Volatilite Etkileşimi: Varyansta Nedensellik Testinden Bulgular. Bankacılar, 32(118), 3-17.
- Köse, Y., & Atik M. (2021). Kredi Temerrüt Takası İle Ülke Alt Sektör Endeksleri Arasındaki İlişkilerin Belirlenmesi: BIST’te Yer Alan Sektörler Üzerinde Analitik Bir İnceleme. Muhasebe ve Finansman Dergisi, 501-510.
- Micallef, J., Grima, S., Spiteri, J., & Rupeika-Apoga, R. (2023). Assessing the Causality Relationship between the Geopolitical Risk Index and the Agricultural Commodity Markets. Risks, 11(5), 84.
- Özdemir, K., İltaş, Y., & Kaderli, Y. (2023). BİST Sektör Endekslerinde Fiyat ve İşlem Hacmi Arasındaki İlişki: Frekans Alanı Nedensellik Testinden Bulgular. Erciyes Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, (64), 63-71.
- Pastor, L., & Veronesi, P. (2012). Uncertainty about government policy and stock prices. The Journal of Finance, 67(4), 1219-1264.
- Pesaran, M. H., Shin, Y., & Smith, R. J. (2001). Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics, 16(3), 289-326.
- Shin, Y., Yu, B., & Greenwood-Nimmo, M. (2014). Modelling asymmetric cointegration and dynamic multipliers in a nonlinear ARDL framework. Festschrift in honor of Peter Schmidt: Econometric methods and applications, 281-314. Springer Publications.
- Sönmez, Y., Baydaş, Y., & Kılıç, E. (2023). CDS Primleri İle Seçili BIST Endeksleri Arasındaki Volatilite Yayılımı. Erciyes Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, (64), 29-34.
- Sun, X., Wang, J., Yao, Y., Li, J., & Li, J. (2020). Spillovers among sovereign CDS, stock and commodity markets: A correlation network perspective. International Review of Financial Analysis, 68, 101271.
- Tanyıldızı, H., & Yiğiter, Ş. Y. (2021). Kredi temerrüt takasları ve emtia fiyatları ilişkisi: Türkiye örneği. Sosyoekonomi, 29(47), 181-200.
- Topaloğlu, E. E., & Ege, İ. (2020). Kredi temerrüt swapları (CDS) ile Borsa İstanbul 100 endeksi arasındaki ilişki: Kısa ve uzun dönemli zaman serisi analizleri. İşletme Araştırmaları Dergisi, 12(2), 1373-1393.
- Xu, W., Rao, W., Wei, L., & Wang, Q. (2023). A Normalized Global Economic Policy Uncertainty Index from Unsupervised Machine Learning. Mathematics, 11(15), 3268.