Vol. 9 No. 4 (2021): Business & Management Studies: An International Journal
Articles

A review on manufacturing applications of the VIKOR approach

Neylan Kaya
Assist. Prof. Dr., Akdeniz University, Antalya, Turkey

Published 2021-12-25

How to Cite

A review on manufacturing applications of the VIKOR approach. (2021). Business & Management Studies: An International Journal, 9(4), 1673-1695. https://doi.org/10.15295/bmij.v9i4.1896

How to Cite

A review on manufacturing applications of the VIKOR approach. (2021). Business & Management Studies: An International Journal, 9(4), 1673-1695. https://doi.org/10.15295/bmij.v9i4.1896

Abstract

VIKOR is a selecting and sorting technique for addressing problems and optimising multi-criteria decision making in complex systems. This study sought the relevant literature to categorise, analyse, and discuss the content and extent of existing studies that used the VIKOR method for applications in manufacturing. The study examined 84 studies published throughout 2018–2020. The studies were categorised by publication dates, author(s) name, techniques and methods, weighting method, comparison method, description of comparison results (comparing a given method to others), testing applicability, and journal-title. Analyses revealed that approximately 35 of the published studies involving VIKOR were related to its strategic use in manufacturing decisions and applications. In 2019, manufacturing was represented more than any other field among all published VIKOR papers, and Sustainability published more of the VIKOR-related articles than any other journal. Interestingly, the integrated and fuzzy VIKOR methods were used more than the traditional VIKOR method. Furthermore, the review results show that VIKOR is flexible enough to be continuously improved by integrating it with the new multi-criteria decision-making methods. This literature review can guide researchers and practitioners in applying VIKOR in various manufacturing fields.

 

 

 

References

  1. Abdel-Basset, M., W. Ding, R. Mohamed, N. Metawa (2020), ‘’An integrated plithogenic MCDM approach for financial performance evaluation of manufacturing industries’’, Risk Manag. 22: 192–218. https://doi.org/10.1057/s41283-020-00061-4.
  2. Abdolazimi, O., M. S. Esfandarani, M. Salehi, D. Shishebori (2020), ‘’Robust design of a multi-objective closed-loop supply chain by integrating on-time delivery, cost, and environmental aspects, case study of a Tire Factory’’, J. Clean. Prod., 264, 121566. https://doi.org/10.1016/j.jclepro.2020.121566.
  3. Adeyeye, A. D. T., A. Adeyemi. T. O. Kehinde, K. J. Olaleye, S. L. Jegede (2019), ‘‘Compromise Ranking Method to the Selection of Starch Source for the Production of Biodegradable Flexible Plastics’’, Int. J. Eng. Res. Tech., 12(10): 1677–1686.
  4. Aikhuele, D. O., S. Odofin (2017), ‘‘A Generalised Triangular Intuitionistic Fuzzy Geometric Averaging Operator for Decision-Making in Engineering and Management’’, Information, 8(3): 78. https://doi.org/10.3390/info8030078.
  5. Amini, A., A. Alinezhad, F. Yazdipoor (2019), ‘‘A TOPSIS, VIKOR and DEA Integrated Evaluation Method with Belief Structure under Uncertainty to Rank Alternatives’’, Int. J. Adv. Oper. Manag., 11(3): 171–188. https://doi.org/10.1504/IJAOM.2019.100708.
  6. Angira, M., D. Deshmukh (2020), ‘’Analysis on Selection of Bridge Material for High Power RF-MEMS Shunt Capacitive Switches’’, Trans. Elect. Electron., 21: 413–418. https://doi.org/10.1007/s42341-020-00194-z.
  7. Antucheviciene, J., E. K. Zavadskas (2008), ‘‘Modelling multidimensional redevelopment of derelict buildings’’, Int. J. Environ. Pollut., 35(2/3/4): 331–344. https://dx.doi.org/10.1504/IJEP.2008.021364.
  8. Ar, İ. M., H. Gökşen, M. A. Tuncer (2015), ‘‘Kablo Sektöründe Tedarikçi Seçimi için Bütünleşik DEMATEL-AAS-VIKOR Yönteminin Kullanılması’’, Ege Akademik Bakış, 15(2): 285–300. https://dergipark.org.tr/tr/pub/eab/issue/39938/474510#article_cite.
  9. Arabameri, A., A. Cerda, J. Rodrigo-Comino, B. Pradhan, M. Sohrabi, T. Blaschke, D. Tien Bui (2019), ‘‘Proposing a Novel Predictive Technique for Gully Erosion Susceptibility Mapping in Arid and Semi-Arid Regions (Iran)’’, Remote Sensing, 11(21): 2577. https://doi.org/10.3390/rs11212577.
  10. Azizi, E., H. Javanshir, D. Jafari, S. Ebrahimnejad (2019), ‘‘Presenting an Integrated BWM-VIKOR-Based Approach for Selecting Suppliers of Raw Materials in the Supply Chain with Emphasis on Agility and Flexibility Criteria (Case study: Saipa corporation)’’, Scientia Iranica. Trans Electron. Ind. Eng., 26(4): 2601–2614. https://doi.org/10.24200/sci.2019.51101.2003.
  11. Bahadori, M., S. M. Hosseini, E. Teymourzadeh, R. Ravangard, M. Raadabadi, Alimohammadzadeh, K. Bahadori, M., S. M. Hosseini, E. Teymourzadeh, R. Ravangard, M. K. Raadabadi, K. Alimohammadzadeh (2020), “A supplier selection model for hospitals using a combination of artificial neural network and fuzzy VIKOR”, Int. J. Healthcare Manag., 13(4): 286–294. DOI: 10.1080/20479700.2017.1404730.
  12. Bai, C., J. Sarkis (2019), ‘‘Integrating and Extending Data and Decision Tools for Sustainable Third-Party Reverse Logistics Provider Selection’’, Comput. Ope. Res., 110: 188–207. https://doi.org/10.1016/j.cor.2018.06.005.
  13. Banaeian, N., H. Mobli, B. Fahimnia, I. E. Nielsen, M. Omid (2018), ‘‘Green Supplier Selection Using Fuzzy Group Decision Making Methods: A Case Study from the Agri-Food Industry’’, Comput. Oper. Res., 89: 337–347. https://doi.org/10.1016/j.cor.2016.02.015.
  14. Baskar, C., Parameshwaran, R., N. Nithyavathy (2020), ‘’Implementation of fuzzy-based integrated framework for sesame seed separator development’’, Soft Computing, 24(10): 7715-7734. DOI: 10.1007/s00500-019-04392-7.
  15. Bathaei, A., A. Mardani, T. Baležentis, S. R. Awang, D. Streimikiene, G. C. Fei, N. Zakuan (2019), ‘‘Application of Fuzzy Analytical Network Process (ANP) and VIKOR for the Assessment of Green Agility Critical Success Factors in Dairy Companies’’, Symmetry, 11(2): 250. https://doi.org/10.3390/sym11020250.
  16. Buffa, E. S. (1984), ‘‘Meeting the Competitive Challenge with Manufacturing Strategy’’, Nat. Prod. Rev., 4(2): 155-169. https://doi.org/10.1002/npr.4040040207.
  17. Büyüközkan, G., F. Göçer, Y. Karabulut (2019), ‘‘A New Group Decision Making Approach with IF AHP and IF VIKOR for Selecting Hazardous Waste Carriers’’, Measurement, 134: 66–82. https://doi.org/10.1016/j.measurement.2018.10.041.
  18. Chakraborty, S., P. Chatterjee, K. Prasad (2018), ‘‘An Integrated DEMATEL–VIKOR Method-Based Approach for Cotton Fibre Selection and Evaluation’’, J Inst. Eng. (India) Series E, 99: 63–73. https://doi.org/10.1007/s40034-018-0113-8.
  19. Chamba, E., L. C. E. Antonio, A. Cardenaz-Yanez, W. Vega, R. H. J. Carlos (2020), “Analysis of the safety compartment material of a light vehicle by multi-criteria method”, Efoque Ute, 11(1): 108–118. DOI: 10.29019/enfoque.v11n1.492.
  20. Chan, F. T. S., N. Kumar, M. K. Tiwari, H. C. W. Lau, K. L. Choy (2008), ‘‘Global Supplier Selection: A Fuzzy-AHP Approach’’, Int. J. Prod. Res., 46(14): 3825–3857. https://doi.org/10.1080/00207540600787200.
  21. Chen, T.-L. C.C. Chen, Y.-C. Chuang, J. J. H. Liou (2020), “A Hybrid MADM Model for Product Design Evaluation and Improvement”, Sustainability, 12, 6743. https://doi.org/10.3390/su12176743.
  22. Cui, F.-B., X.-Y. You, H. Shi, H.-C. Liu (2018), ‘‘Optimal Siting of Electric Vehicle Charging Stations Using Pythagorean Fuzzy VIKOR Approach’’, Math. Probl. Eng., 12. https://doi.org/10.1155/2018/9262067.
  23. Çalı, S., Ş. Y. Balaman (2019), ‘‘A Novel Outranking Based Multi Criteria Group Decision Making Methodology Integrating ELECTRE and VIKOR under Intuitionistic Fuzzy Environment’’, Expert Syst. Appl., 119: 36–50. https://doi.org/10.1016/j.eswa.2018.10.039.
  24. Çolak, M., İ. Kaya (2020), ‘‘Multi-Criteria Evaluation of Energy Storage Technologies Based on Hesitant Fuzzy Information: A Case Study for Turkey’’, J Ener. Stor., 28: 101211. https://doi.org/10.1016/j.est.2020.101211.
  25. Dang, V. T., W. V. T. Dang (2019), ‘‘Multi-Criteria Decision-Making in the Evaluation of Environmental Quality of OECD Countries’’, Int. J. Ethics Syst., 36(1): 119–130. https://doi.org/10.1108/IJOES-06-2019-0101.
  26. Dangayach, G. S., and S. G. Deshmukh (2001), ‘‘Manufacturing Strategy: Experiences from Indian Manufacturing Companies’’, Prod. Plan. Conrt., 2(8): 775–786. https://doi.org/10.1080/09537280110046608.
  27. Dev, S., Aherwar, A., A. Patnaik (2020), ‘‘Material Selection for Automotive Piston Component Using Entropy-VIKOR Method’’, Silicon, 12: 155–169. https://doi.org/10.1007/s12633-019-00110-y.
  28. Dinçer, H., S. Yüksel (2019), ‘‘Selecting Investment Strategies for European Tourism Industry Using the Hybrid Decision Making Approach Based on Interval Type-2 Fuzzy Sets’’, J. Intellig. Fuzzy Syst., 37(1): 1343–1356. doi:10.3233/JIFS-182773.
  29. Doolabi, M. S., B. Ghasemi, S. K. Sadrnezhaad, A. Habibolahzadeh, K. Jafarzadeh (2018), ‘‘Evaluation and Selection of Optimal Oxygen/Fuel Ratio for Best Mechanical Properties. Oxidation Resistance and Microstructure of HVOF NiCoCrAlY Coatings Using AHP–VIKOR Method’’, Oxid. Met., 89: 429–451. https://doi.org/10.1007/s11085-017-9797-2.
  30. Dwimas, H., Y. Sumantri, P. B. Santoso (2019), ‘‘Integration of Analytical Hierarchy Process and VIKOR to Achieve a Sustainable Manufacturing System’’, J Eng. Manag. Ind. Syst., 7(2): 110–119. http://dx.doi.org/ 10.21776/ub.jemis.2019.007.02.6.
  31. Ecer, B., A. Aktas, M. Kabak (2019), ‘‘Green Supplier Selection of a Textile Manufacturer: a Hybrid Approach Based on AHP and VIKOR’’, Manas J. Eng., 7(2): 126–135. https://dergipark.org.tr/tr/pub/mjen/issue/50947/544727.
  32. Farhadinia, B., E. Herrera-Viedma (2019), ‘‘Sorting of Decision-Making Methods Based on Their Outcomes Using Dominance-Vector Hesitant Fuzzy-Based Distance’’, Soft Comput., 23: 1109–1121. https://doi.org/10.1007/s00500-018-3143-8.
  33. Feng, Y., Z. Hong, G. Tian, Z. Li, J. Tan, H. Hu (2018), ‘‘Environmentally Friendly MCDM of Reliability-Based Product Optimisation Combining DEMATEL-Based ANP. Interval Uncertainty and Vlse Kriterijumska Optimizacija Kompromisno Resenje (VIKOR)’’, Inf. Sci., 442–443: 128–144. https://doi.org/10.1016/j.ins.2018.02.038.
  34. Gadhave, P., Prabhune, C., F. Pathan (2020), “Selection of Phase Change Material for Domestic Water Heating Using Multi Criteria Decision Approach”, Aust. J Mech. Eng., DOI: 10.1080/14484846.2020.1842297.
  35. Gao H, L. Ran, Wei G, C. Wei, J. Wu (2020), ‘‘VIKOR Method for MAGDM Based on Q-Rung Interval-Valued Orthopair Fuzzy Information and Its Application to Supplier Selection of Medical Consumption Products’’, Int. J. Environ. Res. Public Health., 17(2): 525. https://doi.org/10.3390/ijerph17020525.
  36. Ghaleb, A. M., H. Kaid, A. Alsamhan, S. H. Mian, L. Hidri (2020), “Assessment and Comparison of Various MCDM Approaches in the Selection of Manufacturing Process”, Adv. Mat. Sci. Eng., https://doi.org/10.1155/2020/4039253.
  37. Ghanbarizadeh, A., J. Heydari, J. Razmi, A. Bozorgi-Amiri (2019), ‘‘A Purchasing Portfolio Model for the Commercial Construction Industry: A Case Study in a Mega Mall’’, Prod. Plan. Control, 30(15): 1283–1304. https://doi.org/10.1080/09537287.2019.1612110.
  38. Ghezelbash, R., A. Maghsoudi (2018) ‘‘A Hybrid AHP-VIKOR Approach for Prospectivity Modeling of Porphyry Cu Deposits in the Varzaghan District NW Iran’’, Arabian Journal of Geosciences, 11: 275. https://doi.org/10.1007/s12517-018-3624-1.
  39. Ghorabaee, M. K. (2016), ‘‘Developing an MCDM Method for Robot Selection with Interval Type-2 Fuzzy Sets’’, Robot. Comput. Integ. Manuf., 37: 221–232. https://doi.org/10.1016/j.rcim.2015.04.007.
  40. Gül, M., Celik, E., Aydin, N., Gumus, A. T., A. F. Guneri (2016), “A state of the art literature review of VIKOR and its fuzzy extensions on applications”, Appl. Soft Comput., 46: 60–89. https://doi.org/10.1016/j.asoc.2016.04.040.
  41. Gül, M. (2018), ‘‘Application of Pythagorean Fuzzy AHP and VIKOR Methods in Occupational Health and Safety Risk Assessment: The Case of a Gun and Rifle Barrel External Surface Oxidation and Colouring Unit’’, Int. J. Occup. Saf. Ergon., 26: 705–718. https://doi.org/10.1080/10803548.2018.1492251.
  42. Gül, M., A. F. Güneri, M. Baskan (2018), ‘‘An Occupational Risk Assessment Approach for Construction and Operation Period of Wind Turbines’’, Glob. J. Environ. Sci. Manag., 4(3). 281–298. https://dx.doi.org/10.22034/GJESM.2018.03.003.
  43. Guo, X., C. Xue, H. Wang, M. Yu (2018), ‘‘Ergonomic Evaluation of DSV Cockpit Console Based on Comprehensive Decision Making Method’’, J. Adv. Mech. Des. Syst., 12(2): 1–13. https://doi.org/10.1299/jamdsm.2018jamdsm0060.
  44. Gürsakal, N. (2015), Karar Verme, Bursa: Dora.
  45. Hassangavyar, M. B., A. N. Samani, S. Rashidi, J. P. Tiefenbacher (2020), ‘‘Catchment-Scale Soil Conservation: Using Climate. Vegetation. and Topo-Hydrological Parameters to Support Decision Making and Implementation’’, Sci. Total Enviro., 712: 136124. https://doi.org/10.1016/j.scitotenv.2019.136124.
  46. Helfat, C. E., R. Raubitschek (2000), ‘‘Product Sequencing: Co-Evolution of Knowledge Capabilities and Product’’, Strat. Manag. J., 21(10–11): 961–979. https://doi.org/10.1002/1097-0266(200010/11)21:10/11%3C961::AID-SMJ132%3E3.0.CO;2-E.
  47. Hu, J., L. Zhang, Q. Wang, B. Tian (2019), ‘‘A Structured Hazard Identification Method of Human Error for Shale Gas Fracturing Operation’’, Hum. Ecol. Risk Assess., 25(5): 1189–1206. https://doi.org/10.1080/10807039.2018.1461008.
  48. Huang, S.-W., J. J. H. Liou, W. Tang, G.-H. Tzeng (2020), ‘‘Location Selection of a Manufacturing Facility from the Perspective of Supply Chain Sustainability’’, Symmetry, 12: 1418. https://doi.org/10.3390/sym12091418.
  49. Jamalnia, A., J.-B. Yang, D.-L. Xu, A. Feili, G. Jamali (2019), ‘‘Evaluating the Performance of Aggregate Production Planning Strategies under Uncertainty in Soft Drink Industry’’, J. Manuf. Sys., 50: 146–162. https://doi.org/10.1016/j.jmsy.2018.12.009.
  50. Jing, S., Z. Niu, P.-C. Chang (2019), ‘‘The Application of VIKOR for the Tool Selection in Lean Management’’, Intell. Manuf., 30(8): 2901–2912. https://doi.org/10.1007/s10845-015-1152-3.
  51. Joshi, R., S. Kumar (2019), ‘‘An Intuitionistic Fuzzy Information Measure of Order-(α. β) with a New Approach in Supplier Selection Problems Using an Extended VIKOR Method’’, J. Appl. Mathem. Comp., 60: 27–50. https://doi.org/10.1007/s12190-018-1202-z.
  52. Kim, J. H., B. S. Ahn (2019), ‘‘Extended VIKOR Method Using Incomplete Criteria Weights’’, Expert Syst. Appl., 126: 124–132. https://doi.org/10.1016/j.eswa.2019.02.019.
  53. Kim, J. H., S. Ahn (2020), “The Hierarchical VIKOR Method with Incomplete Information: Supplier Selection Problem”, Sustainability, 12(22): 9602. DOI: 10.3390/su12229602.
  54. Krishankumar, R., K. S. Ravichandran, K. K. Murthy, A. B. Saeid (2018), ‘‘A Scientific Decision-Making Framework for Supplier Outsourcing Using Hesitant Fuzzy Information’’, Soft Comput., 22: 7445–7461. https://doi.org/10.1007/s00500-018-3346-z.
  55. Kumar, A., A. Alora, H. Gupta (2020), ‘‘Evaluating Green Performance of the Airports Using Hybrid BMW and VIKOR Methodology’’, Tour. Manag., 76: 103941. https://doi.org/10.1016/j.tourman.2019.06.016.
  56. Kumar, M., R. Kumar, Y. Tak, R. K. Meena, N. Sharma, A. Kumar (2020), “Parametric optimisation and ranking analysis of hybrid epoxy polymer composites based on mechanical, thermo-mechanical and abrasive wear performance”, High Perform. Poly., 33(4): 361–382. https://doi.org/10.1177%2F0954008320959412.
  57. Kumar, R., R. K. Garg (2010), ‘‘Optimal Selection of Robots by Using Distance Based Approach Method’’, Robo. Comp.-Integ. Manuf., 26(5): 500–506. https://doi.org/10.1016/j.rcim.2010.03.012.
  58. Lee, Z. Y., M. T. Chu, Y. T. Wang, K. J. Chen (2020), “Industry Performance Appraisal Using Improved MCDM for Next Generation of Taiwan”, Sustainability, 12(13), 5290. DOI: 10.3390/su12135290.
  59. Li, H., W. Wang, L. Fan, QZ. Li, XZ. Chen (2020), “A novel hybrid MCDM model for machine tool selection using fuzzy DEMATEL, entropy weighting and later defuzzification VIKOR”, Appl. Soft Comput., 91, 106207. https://doi.org/10.1016/j.asoc.2020.106207.4.
  60. Li, Y., M.-D. Shieh, C.-C. Yang, L. Zhu (2018), ‘‘Application of Fuzzy-Based Hybrid Taguchi method for Multi-objective Optimisation of Product Form Design’’, Math. Prob. Eng., 18. https://doi.org/10.1155/2018/9091514.
  61. Liang, X., P. Liu, Z. Wang (2019), ‘‘Hotel Selection Utilizing Online Reviews: A Novel Decision Support Model Based on Sentiment Analysis and DL-VIKOR Method’’, Technological and Economic Development of Economy, 25(6): 1139–1161. https://doi.org/10.3846/tede.2019.10766.
  62. Lin, C.-L., C.-L. Kuo (2019), ‘‘A Service Position Model of Package Tour Services Based on the Hybrid MCDM Approach’’, Current Issues in Tourism, 22(20): 2478–2510. https://doi.org/10.1080/13683500.2018.1524856.
  63. Liu, K.-M., S.-H. Lin, J.-C. Hsieh, G.-H. Tzeng (2018), ‘‘Improving the Food Waste Composting Facilities Site Selection for Sustainable Development Using a Hybrid Modified MADM Model’’, Waste Management, 75: 44–59. https://doi.org/10.1016/j.wasman.2018.02.017.
  64. Liu, A., T. Liu, X. Ji, H. Lu, F. Li (2020), ‘‘The Evaluation Method of Low-Carbon Scenic Spots by Combining IBWM with B-DST and VIKOR in Fuzzy Environment.’’, Int. J. Environ. Res. Pub. Health, 17(1): 89. https://doi.org/10.3390/ijerph17010089.
  65. Liu, A., Y. Xiao, H. Lu, S.-B. Tsai, W. Song (2019), ‘‘A Fuzzy Three-Stage Multi-Attribute Decision Making Approach Based on Customer Needs for Sustainable Supplier Selection’’, J Cleaner Prod., 239: 118043. https://doi.org/10.1016/j.jclepro.2019.118043.
  66. Lo, HW., W. Shiue, J. J. H. Liou, G. H. Tzeng (2020), “A hybrid MCDM-based FMEA model for identification of critical failure modes in manufacturing”, Soft Comput., 24, 15733–15745. https://doi.org/10.1007/s00500-020-04903-x.
  67. Lu, M.-T., C.-C. Hsu, J. J. H. Liou, H.-W. Lo (2018), ‘‘A Hybrid MCDM and Sustainability-Balanced Scorecard Model to Establish Sustainable Performance Evaluation for International Airports’’, J Air. Transp. Manag., 71: 9–19. https://doi.org/10.1016/j.jairtraman.2018.05.008.
  68. Lukic, D., R. Cep, J. Vukman, A. Antic, M. Djurdjev, M. Milosevic (2020), “Multi-Criteria Selection of the Optimal Parameters
  69. for High-Speed Machining of Aluminum Alloy Al7075 Thin-Walled Parts”, Metals, 10(12): 1570. http://dx.doi.org/10.3390/met10121570.
  70. Madhu, P., C. S. Dhanalakshmi, M. Mathew (2020), “Multi-criteria decision-making in the selection of a suitable biomass material for maximum bio-oil yield during pyrolysis”, Fuel, 227: 118109. https://doi.org/10.1016/j.fuel.2020.118109.
  71. Majumder, H., and K. Maity (2018), ‘‘Application of GRNN and Multivariate Hybrid Approach to Predict and Optimise WEDM Responses for Ni-Ti Shape Memory Alloy’’, Applied Soft Computing, 70: 665-679. https://doi.org/10.1016/j.asoc.2018.06.026.
  72. Mamdouh, M., M. A. Abido, Z. Hamouz (2018), ‘‘Weighting Factor Selection Techniques for Predictive Torque Control of Induction Motor Drives: A Comparison Study’’, Arabian Journal for Science and Engineering, 43: 433-445. https://doi.org/10.1007/s13369-017-2842-2.
  73. Mardani, A., E. K. Zavadskas, K. Govindan, A. Amat Senin, A., Jusoh (2016), ‘‘VIKOR technique: A systematic review of the state-of-the-art literature on methodologies and applications’’, Sustainability, 8(1), 37. https://doi.org/10.3390/su8010037.
  74. Meksavang, P., H. Shi, S.-M. Lin, H.-C. Liu (2019), ‘‘An Extended Picture Fuzzy VIKOR Approach for Sustainable Supplier Management and its Application in the Beef Industry’’, Symmetry, 11(4): 468. https://doi.org/10.3390/sym11040468.
  75. Mohammed, A. (2020), ‘‘Towards ‘Gresilient’ Supply Chain Management: A Quantitative Study’’, Resources. Conservation & Recycling, 155: 1–13. https://doi.org/10.1016/j.resconrec.2019.104641.
  76. Moiduddin, K., S. H. Mian, U. Umer, H. Alkhalefah, A. Sayeed (2020), “Fuzzy Multicriteria Decision Mapping to Evaluate Implant Design for Maxillofacial Reconstruction”, Mathematics, 8(12): 2121. https://doi.org/10.3390/math8122121.
  77. Moradian, M., V. Modanloo, S. Aghaiee (2019), ‘‘Comparative Analysis of Multi-Criteria Decision Making Techniques for Material Selection of Brake Booster Valve Body’’, J Traffic Transpor. En., 6(5): 526–534. https://doi.org/10.1016/j.jtte.2018.02.001.
  78. Narayanamoorthy, S., S. Geetha, R. Rakkiyappan, Y. H. Joo (2019), “Interval-valued intuitionistic hesitant fuzzy entropy based VIKOR method for industrial robots’ selection”, Exp. Syst. Appl., 121: 28–37. https://doi.org/10.1016/j.eswa.2018.12.015.
  79. Narver, J. C., S. F. Slater, D. L. MacLachlan (2004), ‘‘Responsive and Proactive Market Orientation and New-Product Success”, J. Prod. Innov. Manag., 21(5): 334–347. https://doi.org/10.1111/j.0737-6782.2004.00086.x.
  80. Nejati, A., M. Ravanshadnia, E. Sadeh (2018), ‘‘Selecting an Appropriate Express Railway Pavement System Using VIKOR Multi-Criteria Decision Making Model’’, Civil Eng. J., 4(5): 1104–1116. http://dx.doi.org/10.28991/cej-0309160.
  81. Okatan, S. B., I. Peker, B. Baki (2019), ‘‘An Integrated DEMATEL-ANP-VIKOR Approach for Food Distribution Center Site Selection: A Case Study of Georgia’’, J Manag. Mark. Logist., 6(1): 10–20. https://doi.org/10.17261/Pressacademia.2019.1030.
  82. Opricovic, S., G.-H. Tzeng (2004), ‘‘Compromise Solution by MCDM Methods: A Comparative Analysis of VIKOR and TOPSIS’’, Euro. J. Oper. Res., 156: 445–455. https://doi.org/10.1016/S0377-2217(03)00020-1.
  83. Opricovic, S., G.-H. Tzeng (2007), ‘‘Extended VIKOR Method in Comparison with Outranking Methods’’, Eur. J. Oper. Res., 178: 514–529. https://doi.org/10.1016/j.ejor.2006.01.020.
  84. Önüt, S., S. S. Kara, T. Efendigil (2008), ‘‘A Hybrid Fuzzy MCDM Approach to Machine Tool Selection’’, J Intell. Manu., 19: 443–453. https://doi.org/10.1007/s10845-008-0095-3.
  85. Paul, A., M. A. Moktadir, S. K. Paul (2019), ‘‘An innovative decision-making framework for evaluating transportation service providers based on sustainable criteria’’, Int. J. Prod. Res., https://doi.org/10.1080/00207543.2019.1652779.
  86. Pedrycz, W., P. Ekel, Parreiras (2010), Fuzzy Multicriteria Decision-Making: Models. Methods and Applications, John Wiley, Newyork. doi:10.1002/9780470974032.
  87. Perez-Velazquez, A., L. L. Oro-Carralero, J. L. Moya-Rodriguez (2020), “Supplier Selection for Photovoltaic Module Installation Utilizing Fuzzy Inference and the VIKOR Method: A Green Approach”, Sustainability, 12(6): 2242. DOI: 10.3390/su12062242.
  88. Qi, J., J. Hu, Y. Peng (2020), “Integrated rough VIKOR for customer-involved design concept evaluation combining with customers’ preferences and designers’ perceptions”, Adv. Eng. Inform., 46. doi:10.1016/j.aei.2020.101138.
  89. Rajesh, R. (2018), ‘‘Measuring the Barriers to Resilience in Manufacturing Supply Chains Using Grey Clustering and VIKOR Approaches’’, Measurement, 126: 259–273. https://doi.org/10.1016/j.measurement.2018.05.043.
  90. Rajesh, R. (2020), ‘‘Sustainable Supply Chains in the Indian Context: An Integrative Decision-Making Model’’, Technol. Soc., 61: 101230. https://doi.org/10.1016/j.techsoc.2020.101230.
  91. Rani, P., A. R. Mishra, K. R. Pardasani, A. Mardani, H. Liao, D. Streimikiene (2019), ‘‘A Novel VIKOR Approach Based on Entropy and Divergence Measures of Pythagorean Fuzzy Sets to Evaluate Renewable Energy Technologies in India’’, J Clean. Prod., 238: 1179362. https://doi.org/10.1016/j.jclepro.2019.117936.
  92. Rathi, R., C. Prakash, S. Singh, G. Krolczyk, C. I. Pruncu (2020), ‘‘Measurement and Analysis of Wind Energy Potential Using Fuzzy Based Hybrid MADM Approach’’, Energy Rep., 6: 228–237. https://doi.org/10.1016/j.egyr.2019.12.026.
  93. Raykar, S. J., D. M. D’Addona (2019), ‘‘Selection of Best Printing Parameters of Fused Deposition Modelling Using VIKOR’’, Mater. Today. https://doi.org/10.1016/j.matpr.2019.11.104.
  94. Reddy, B. P. K., K. B. R. Teja, K. Kandpal (2018), ‘‘Investigation on High-K Dielectric for Low Leakage AIGaN/GaN MIS-HEMT Device. Using Material Selection Methodologies’’, Semiconductors, 52(4): 420–430. https://doi:10.1134/S1063782618040073.
  95. Ren, J. (2018), ‘‘Selection of Sustainable Prime Mover for Combined Cooling. Heat and Power Technologies under Uncertainties: An Interval Multicriteria Decision-Making Approach’’, Int. J. Ener. Res., 42(8): 2655–2669. https://doi.org/10.1002/er.4050.
  96. Sharaf, I. M. (2019), ‘‘Supplier Selection Using a Flexible Interval-Valued Fuzzy VIKOR’’, Granular Computing. https://doi.org/10.1007/s41066-019-00169-3.
  97. Simab, M., M. S. Javadi, A. E. Nezhad (2018), ‘‘Multi-Objective Programming of Pumped-Hydro-Thermal Scheduling Problem Using Normal Boundary Intersection and VIKOR’’, Energy, 143: 854–866. https://doi.org/10.1016/j.energy.2017.09.144.
  98. Singh, A. K., Siddharta, P. Gupta, and P. K. Singh (2018), ‘‘Evaluation of Mechanical and Erosive wear Characteristics of TiO2 and ZnO Filled Bi-Directional E-glass Fiber Based Vinyl Ester Composites’’, Silicon, 10: 309–327. https://doi.org/10.1007/s12633-016-9447-3.
  99. Singh, M., K. Singh, A. P. S. Sethi (2020), ‘‘An empirical investigation and prioritising critical barriers of green manufacturing implementation practices through VIKOR approach’’, World J. Sci. Technol. Sustain. Dev., 17(2): 235–254. DOI: 10.1108/WJSTSD-08-2019-0060.
  100. Singh R. K., S. Modgil (2020), ‘‘Assessment of Lean Supply Chain Practices in Indian Automotive Industry’’, Glob. Bus. Rev. https://doi.org/10.1177%2F0972150919890234.
  101. Singh, T., A. Patnaik, R. Chauhan, P. Chauhan (2018), ‘‘Selection of Brake Friction Materials Using Hybrid Analytical Hierarchy Process and Vise Kriterijumska Optimizacija Kompromisno Resenje Approach’’, Polym. Compos., 39(5): 1655–1662. https://doi.org/10.1002/pc.24113.
  102. Singla, A., I. S. Ahuja, A. S. Sethi (2018), ‘‘Comparative Analysis of Technology Push Strategies Influencing Sustainable Development in Manufacturing Industries Using TOPSIS and VIKOR Technique’’, Int. J. Qual. Res., 12(1): 129–146. https://doi.org/10.18421/ijqr12.01-08.
  103. Swamidass, P. M., W. T. Newel (1987), ‘‘Manufacturing Strategy. Environmental Uncertainty and Performance: A Path Analytic Model’’, Manag. Sci., 33(4): 427–546. https://doi.org/10.1287/mnsc.33.4.509.
  104. Tabak, Ç., K. Yıldız, M. A. Yerlikaya (2019), ‘‘Logistic Location Selection with CRITIC-AHP and VIKOR Integrated Approach’’, Data Sci. Appl., 2(1): 21–25. http://www.jdatasci.com/index.php/jdatasci/issue/view/3.
  105. Tian, Z.-P., J.-Q. Wang, H.-Y. Zhang (2018), ‘‘An Integrated Approach for Failure Mode and Effect Analysis Based on Fuzzy Best-Worst Relative Entropy and VIKOR Methods’’, Appl. Soft Comput., 72: 636–646. https://doi.org/10.1016/j.asoc.2018.03.037.
  106. Vahdani, B., S. Meysam Mousavi, R. Tavakkoli-Moghaddam, A. Ghodratnama, M. Mohammadi (2014), ‘‘Robot Selection by a Multiple Criteria Complex Proportional Assesment Method under an Interval-Valued Fuzzy Environment’’, Int. J. Adv. Manuf. Technol., 73: 687–697. https://doi.org/10.1007/s00170-014-5849-9.
  107. Wang, Y.–L., K.-Y.Shen; J.-Y.Huang, P. Luarn (2020), “Use of a Refined Corporate Social Responsibility Model to Mitigate Information Asymmetry and Evaluate Performance”, Symmetry, 12: 1349. https://doi.org/10.3390/sym12081349.
  108. Wang, B., J. Song, J. Ren, K. Li, H. Duan, X. Wang (2019), ‘‘Selecting Sustainable Energy Conversion Technologies for Agricultural Residues: A Fuzzy AHP-VIKOR Based Prioritisation from Lifecycle Perspective’’, Resour. Conserv. Recy., 142: 78–87. https://doi.org/10.1016/j.resconrec.2018.11.011.
  109. Wheel Wright, S. C. (1984), ‘‘Manufacturing-Strategy: Defining the Missing Link’’, Strateg. Manag. J., 5(1): 77–94. https://doi.org/10.1002/smj.4250050106.
  110. Wu, Y., C. Xie, C. Xu, F. Li (2017), ‘‘A Decision Framework for Electric Vehicle Charging Station Site Selection for Residential Communities under an Intuitionistic Fuzzy Environment: A Case of Beijing’’, Energies, 10: 1–25. https://doi.org/10.3390/en10091270.
  111. Wu, Q., L. Zhou, Y. Chen, H. Chen (2019), ‘‘An Integrated Approach to Green Supplier Selection Based on the Interval Type-2 Fuzzy Best-Worst and Extended VIKOR Methods’’, Inform. Sci., 502: 394–417. https://doi.org/10.1016/j.ins.2019.06.049.
  112. Xue, M., X. Tang, N. Feng (2016), ‘‘An Extended VIKOR Method for Multiple Attribute Decision Analysis with Bidimensional Dual Hesitant Fuzzy Information’’, Math. Probl. Eng., 1–16. https://doi.org/10.1155/2016/4274690.
  113. Yager, R. R. (2018), “Categorisation in Multi-Criteria Decision Making”, Info. Sci., 460–461: 416–423. https://doi.org/10.1016/j.ins.2017.08.011.
  114. Yan, A.-T., M.-J. Lai, C.-Y. Lin (2014), ‘’ An Evaluation Model for Improving the Green Building by Integrating DEMATEL Based ANP and VIKOR’’, International Symposium on Computer, Consumer and Control (IS3C), June 10–12, Taiwan. https://doi.org/10.1109/IS3C.2014.194.
  115. Yue, C. (2020), ‘‘Picture Fuzzy Normalized Projection and Extended VIKOR Approach to Software Reliability Assesment’’, Appl. Soft Comput. J., 88: 106056. https://doi.org/10.1016/j.asoc.2019.106056.
  116. Yurdakul, M., A. Balci, Y. T. Ic (2020), ‘‘A knowledge-based material selection system for interactive pressure vessel design’’, Int. J. Interact. Des. Manuf.’’, 14:323–343. https://doi.org/10.1007/s12008-020-00652-1.
  117. Yogi, V., S. C. Solanki (2019), ‘‘Selection of Material Handling Equipment Using Hybrid Entropy-VIKOR and Entropy-TOPSIS Technique’’, Indust. Eng. J., 12(4): 1-12. https://doi.org/10.26488/IEJ.12.4.1180.
  118. Zare, A., M. R. Feylizadeh, A. Mahmoudi, S. Liu (2018), ‘‘Suitable Computerized Maintenance Management System Selection Using Grey Group TOPSIS and Fuzzy Group VIKOR: A Case Study’’, Decis. Sci. Lett., 7: 341–358. https://doi.org%2F10.5267%2Fj.dsl.2018.3.002.
  119. Zarei, F., Y. Amiri, P. Farhadi (2019), ‘‘The Study of the Implementation of Circular Economy in Manufacturing Industries Using Fuzzy Multi-Criteria Decision Making Techniques (Case Study: Paper Making Companies)’’, J Econ. Soc. Res., 18(2): 237–253. http://www.jesr.org/.
  120. Zavadskas, E. K., Z. Turskis (2011), “Multiple Criteria Decision Making (MCDM) Methods in Economics: An Overview”, Technol. Econ. Dev. Econ., 17(2): 397–427. https://doi.org/10.3846/20294913.2011.593291.
  121. Zhang, H., Y. Wu, K. Wang,Y. Peng, D, Wang, D., S. Yao, J. Wang (2020), ‘‘Materials selection of ^D-printed continuous carbon fiber reinforced composites considering multiple criteria’’, Mater. Des., 196. https://doi.org/10.1016/j.matdes.2020.109140.
  122. Zhang, Z.-J., L. Gong, Y. Jin, J. Xie, J. Hao (2017), ‘‘A Quantative Approach to Design Alternative Evaluation Based on Data-Driven Performance Prediction’’, Adv. Eng. Inform., 32: 52–65. http://dx.doi.org/10.1016/j.aei.2016.12.009.
  123. Zhao, H., H. Zhao, and S. Guo (2018), ‘‘Comprehensive Performance Evaluation of Electricity Grid Corporations Employing a Novel MCDM Model’’, Sustainability, 10(7): 2130. https://doi.org/10.3390/su10072130.
  124. Zheng, X., S. M. Easa, Z. Yang, T. Ji, Z. Jiang (2019), ‘‘Life-Cycle Sustainability Assesment of Pavement Maintenance Alternatives: Methodology and Case Study’’, J Clea.Prod., 213: 659–672. https://doi.org/10.1016/j.jclepro.2018.12.227.
  125. Zheng, G., X. Wang (2020), ‘‘The Comprehensive Evaluation of Renewable Energy System Schemes in Tourist Resorts Based on VIKOR Method’’, Energy, 193: 1–12. https://doi.org/10.1016/j.energy.2019.116676.
  126. Zhou, F., X. Wang, A. Samvedi (2018), ‘‘Quality Improvement Pilot Program Selection Based on Dynamic Hybrid MCDM Approach’’, Industrial Management & Data Systems, 118(1): 144–163. https://doi.org/10.1108/IMDS-11-2016-0498.
  127. Zhou, F., Wang, X., M. Goh (2018), ‘‘Fuzzy extended VIKOR-based mobile robot selection model for hospital pharmacy’’, In.l J. Adv. Robot. Syst., 15(4):1–11. https://doi.org/10.1177/1729881418787315.
  128. Zopounidis, C., M. Doumpos (2017), Multiple Criteria Decision Making: Applications in Management and Engineering, Springer, Heidelberg.