Yayınlanmış 26.06.2023
Anahtar Kelimeler
- Veri Madenciliği, Muhasebe, Hile Tespiti, Yapay Sinir Ağları, Karar Ağacı
- Data Mining, Accounting, Fraud Detection, Artificial Neural Networks, Decision Tree
Nasıl Atıf Yapılır
Telif Hakkı (c) 2023 Yusuf Işık- İlker Kefe- Jale Sağlar
Bu çalışma Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License ile lisanslanmıştır.
Nasıl Atıf Yapılır
Öz
Muhasebe sistemleri, finansal işlemler nedeniyle büyük miktarda veri üretir. Ortaya çıkan yüksek boyutlu ve çok sayıdaki bu verilerde bilerek hileli işlemler gerçekleşebilir. Muhasebede hileli işlemlerin tahmini ve tespiti için denetim süreci, kapsamı, uygulanma metodu farklılık gösteren birçok yöntem kullanılabilmekteyken günümüzde veri sayısının çok fazla olması ve denetim kapsamını daraltmama isteği gibi sebeplerle veri madenciliği yöntemleri de kullanılabilmektedir. Bu çalışmada yapay sinir ağları ve karar ağacı yöntemleri kullanılarak hileli işlemlerin tespitinin doğruluğu test edilmiştir. Hile veya hata riskinin tespiti için yapılan analiz test veri seti sonuçlarına göre yapay sinir ağları yönteminde %99.7981, karar ağacı yönteminde %99.9899 doğruluk elde edilmiştir.
Referanslar
- ACFE (2022). Occupational Fraud 2022: A Report to the nations, https://acfepublic.s3.us-west-2.amazonaws.com/2022+Report+to+the+Nations.pdf
- Aksoy, B. (2021). Finansal tablo hileleri’nin makine öğrenmesi yöntemleri ve lojistik regresyon kullanılarak tahmin edilmesi: Borsa İstanbul örneği. Maliye ve Finans Yazıları, (115), 29-60.
- Albizri, A., Appelbaum, D., & Rizzotto, N. (2019). Evaluation of financial statements fraud detection research: a multidisciplinary analysis. International Journal of Disclosure and Governance, 16, 206–241.
- Amani, F., & Fadlalla, A. (2017). Data mining applications in accounting: A review of the literature and organizing framework. International Journal of Accounting Information Systems, 24, 32-58.
- Ata, H., & Seyrek, I. (2009). The use of data mining techniques in detecting fraudulent financial statements: An application on manufacturing firms. Suleyman Demirel University Journal of Faculty of Economics & Administrative Sciences, 14(2), 157-170.
- Baldwin, A., Brown, C., & Trinkle, B. (2006). Opportunities for artificial intelligence development in the accounting domain: the case for auditing. Intelligent Systems in Accounting, Finance and Management, 14(3), 77-86.
- Can, N., & Şencan Şahin, A. (2021). Yapay sinir ağları metodu ile günlük çiğ noktası sıcaklığı tahmini. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11(4), 1154-1163.
- Dayı, F., & Ata, H.A. (2012). Yapay sinir ağı ile hisse senedi getirisi tahmini: Bir firma uygulaması. 16. Finans Sempozyumu, 181-194.
- Debreceny, R., & Gray, G. (2010). Data mining journal entries for fraud detection: An exploratory study. International Journal of Accounting Information Systems, 11(3), 157-181.
- Dutta, I., Dutta, S., & Raahemii, B. (2017). Detecting financial restatements using data mining techniques. Expert Systems with Applications, 90, 374-393.
- Fanning, K., & Cogger, K. (1998). Neural network detection of management fraud using published financial data. Intelligent Systems in Accounting, Finance & Management, 7(1), 21-41.
- Gray, G., & Debreceny, R. (2014). A taxonomy to guide research on the application of data mining to fraud detection in financial statement audits. International Journal of Accounting Information Systems, 15(4), 357-380.
- Green, B., & Choi, J. (1997). Assessing the risk of management fraud through neural network technology. Auditing: A Journal of Practice and Theory, 16(1), 14-28.
- Gür, Ö. (2023). Karar ağacı destekli hile tespiti ve bir uygulama. Alanya Akademik Bakış, 7(1), 511-528.
- Gür, Ö., & Tarhan Mengi, B. (2022). Hile tespitinde makine öğrenmesi yöntemlerinin kullanılması ve model performanslarının değerlendirilmesi. İşletme Araştırmaları Dergisi, 14(4), 3053–3065.
- Jan, C. (2018) An effective financial statements fraud detection model for the sustainable development of financial markets: Evidence from Taiwan. Sustainability, 10(513), 1-14.
- Kara, S., & Özcan, P. (2020) Muhasebe manipülasyonlarında yapay sinir ağlarının önemi ve bir uygulama. Muhasebe ve Denetime Bakış, 20(60), 155-176.
- Kılıç, İ., & Önal, S. (2022). Finansal hilelerin tespit edilmesinde kullanılan veri madenciliği yöntemleri ve Borsa İstanbul'da bir uygulama. Muhasebe ve Denetime Bakış, 22(67), 181-208.
- Kılıç, İ., & Önal, S. (2021). Finansal hilelerin yapay sinir ağları yöntemi ile tespit edilmesi. İksad Publishing House, 230 s, Ankara.
- Kılıç, Y., & Seyrek, İ. (2012). Finansal başarısızlık tahmininde yapay sinir ağlarının kullanılması: İmalat sektöründe bir uygulama, 1. International Symposium on Accounting and Finance, 1-15.
- Kırda, K., & Katkat Özçelik, M. (2021). Finansal tablo hilesi riski taşıyan şirketlerin veri madenciliği ile belirlenmesi. Journal of Accounting and Taxation Studies, 14(2), 609-639.
- Kıymetli Şen, İ., & Terzi, S. (2022) Yapay zeka ve dijital muhasebe trendlerinde muhasebe eğitimine ilişkin öneriler. Journal of Business in The Digital Age, 5(2), 105-113.
- Kıymetli Şen, İ., & Terzi, S. (2012). Detecting falsified financial statements using data mining: Empirical research on finance sector in Turkey. Maliye Finans Yazıları, 26(96), 76-94.
- Kirkos, E., Spathis, C., & Manolopoulos, Y. (2007). Data mining techniques for the detection of fraudulent financial statements. Expert systems with applications, 32(4), 995-1003.
- Kirkos, E., Spathis, C., & Manolopoulos, Y. (2008). Support vector machines, decision trees and neural networks for auditor selection. Journal of Computational Methods in Sciences and Engineering, 8(3), 213-224.
- Kopun, D. (2018). A review of the research on data mining techniques in the detection of fraud in financial statements. Journal of Accounting and Management, 8(1), 1-18.
- Kotekani, S., & Velchamy, I. (2020). An effective data sampling procedure for imbalanced data learning on health insurance fraud detection. Journal of computing and information technology, 28(4), 269-285.
- Kotsiantis, S., Koumanakos, E., Tzelepis, D., & Tampakas, V. (2006). Forecasting fraudulent financial statements using data mining. International journal of computational intelligence, 3(2), 104-110.
- Lin, C., Chiu, A., Huang, S., & Yen, D. (2015). Detecting the financial statement fraud: The analysis of the differences between data mining techniques and experts’ judgments. Knowledge-Based Systems, 89, 459-470.
- Liou, F.M. (2008). Fraudulent financial reporting detection and business failure prediction models: A comparison. Managerial Auditing Journal, 23(7), 650-662.
- Murorunkwere, B., Tuyishimire, O., Haughton, D., & Nzabanita, J. (2022). Fraud detection using neural networks: A case study of income tax. Future Internet, 14(6), 168.
- Ngai, E., Hu, Y., Wong, Y., Chen, Y., & Sun, X. (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision support systems, 50(3), 559-569.
- Önal, S., & Kılıç, İ. (2019). Hile denetiminde kırmızı bayraklar yöntemi, Çukurova II. Uluslararası Multidisipliner Çalışmalar Kongresi Bildiriler Kitabı, 548-552.
- Pérez López, C., Delgado Rodríguez, M., & de Lucas Santos, S. (2019). Tax fraud detection through neural networks: An application using a sample of personal income taxpayers. Future Internet, 11(4), 86.
- Rezaee, Z. (2005). Causes, consequences, and deterence of financial statement fraud. Critical Perspectives on Accounting, 16(3), 277-298.
- Rukhsar, L., Bangyal, W., Nisar, K., & Nisar, S. (2022). Prediction of insurance fraud detection using machine learning algorithms. Mehran University Research Journal Of Engineering & Technology, 41(1), 33-40.
- Seyrek, İ.H., & Ata, H.A. (2010). Veri zarflama analizi ve veri madenciliği ile mevduat bankalarında etkinlik ölçümü. BDDK Bankacılık ve Finansal Piyasalar Dergisi, 4(2), 67-84.
- Tang, J., & Karim, K. (2019). Financial fraud detection and big data analytics–implications on auditors’ use of fraud brainstorming session. Managerial Auditing Journal, 34(3), 324-337.
- Tang, X., Liu, G., Yang, J., & Wei, W. (2018). Knowledge-based financial statement fraud detection system: based on an ontology and a decision tree. Knowledge Organization, 45(3), 205-219.
- Tatar, B., & Kıymık, H. (2021). Finansal tablolarda hile riskinin tespit edilmesinde veri madenciliği yöntemlerinin kullanılmasına yönelik bir araştırma. Journal of Yasar University, 16(64), 1700-1719.
- Terzi, S. (2012). Hile ve usulsüzlüklerin tespitinde veri madenciliğinin kullanımı. Muhasebe ve Finansman Dergisi, (54), 51-64.
- Terzi, S., & Kıymetli Şen, İ. (2015). Adli muhasebede hilelerin tespitinde yapay sinir ağı modelinin kullanımı. International Journal of Economic & Administrative Studies, 7(14), 477-490.
- Terzi, S., & Kıymetli Şen, İ. (2012). Finansal tablo hilelerinin veri madenciliği yardımıyla tespit edilmesi: Üretim sektöründe bir araştırma. Journal of Accounting and Taxation Studies, 5(2), 25-40.
- Tunç, A., & Ülger, İ. (2016). Veri madenciliği uygulamalarında özellik seçimi için finansal değerlere binning ve five number summary metotları ile normalizasyon işleminin uygulanması, 18. Akademik Bilişim Konferansı, Bildiriler Kitabı, 47-58.
- Ugrin, J., & Odom, M. (2010). Exploring Sarbanes–Oxley’s effect on attitudes, perceptions of norms, and intentions to commit financial statement fraud from a general deterrence perspective. Journal of Accounting and Public Policy, 29(5), 439-458.
- Uğurlu, M., & Sevim, Ş. (2015). A comparative analysis on the relative success of mixed-models for financial statement fraud risk estimation. Gaziantep University Journal of Social Sciences, 14(1), 65-88.
- Ulucan Özkul, F., & Pektekin, P. (2009). Muhasebe yolsuzluklarının tespitinde adli muhasebecinin rolü ve veri madenciliği tekniklerinin kullanılması. World of Accounting Science, 11(4), 57-88.
- Yang, J. (2006). Data mining techniques for auditing attest function and fraud detection. Journal of Forensic Investigative Accounting, 1(1), 4-10.
- Yao, J., Zhang, J., & Wang, L. (2018). A financial statement fraud detection model based on hybrid data mining methods. International Conference on Artificial Intelligence and Big Data (ICAIBD), 57-61.
- Ye, H., Xiang, L., & Gan, Y. (2019). Detecting financial statement fraud using random forest with SMOTE. In IOP Conference Series: Materials Science and Engineering, 612(5), 052051, IOP Publishing.
- Zhou, W., & Kapoor, G. (2011). Detecting evolutionary financial statement fraud. Decision Support Systems, 50(3), 570-575.