Cilt 8 Sayı 5 (2020): Business & Management Studies: An International Journal
Makaleler

TÜRKİYE İÇİN GÜNEŞ ENERJİSİ KURULU GÜCÜNÜN YAPAY SİNİR AĞI VE İKİ YÖNLÜ UZUN- KISA VADELİ BELLEK KULLANILARAK TAHMİNİ

Mehmet Hakan Özdemir, Dr. Öğr. Üyesi
Dr. Öğr. Üyesi, Türk-Alman Üniversitesi
Murat İnce, Dr. Öğr. Üyesi
Dr. Öğr. Üyesi, Isparta Uygulamalı Bilimler Üniversitesi
Batin Latif Aylak, Dr. Öğr. Üyesi
Dr. Öğr. Üyesi, Türk-Alman Üniversitesi
Okan Oral, Dr. Öğr. Üyesi
Dr. Öğr. Üyesi, Akdeniz Üniversitesi
Mehmet Ali Taş, Arş. Gör.
Arş. Gör., Türk-Alman Üniversitesi

Yayınlanmış 25.12.2020

Anahtar Kelimeler

  • Renewable Energy,
  • Solar Energy,
  • Prediction,
  • Artificial Neural Network
  • Yenilenebilir Enerji,
  • Güneş Enerjisi,
  • Tahmin,
  • Yapay Sinir Ağları

Nasıl Atıf Yapılır

TÜRKİYE İÇİN GÜNEŞ ENERJİSİ KURULU GÜCÜNÜN YAPAY SİNİR AĞI VE İKİ YÖNLÜ UZUN- KISA VADELİ BELLEK KULLANILARAK TAHMİNİ. (2020). Business & Management Studies: An International Journal, 8(5), 4047-4068. https://doi.org/10.15295/bmij.v8i5.1639

Nasıl Atıf Yapılır

TÜRKİYE İÇİN GÜNEŞ ENERJİSİ KURULU GÜCÜNÜN YAPAY SİNİR AĞI VE İKİ YÖNLÜ UZUN- KISA VADELİ BELLEK KULLANILARAK TAHMİNİ. (2020). Business & Management Studies: An International Journal, 8(5), 4047-4068. https://doi.org/10.15295/bmij.v8i5.1639

Öz

Sürdürülebilir bir kalkınma için yenilenebilir enerji kaynakları önemli bir rol oynamakta ve yenilenebilir enerji kaynaklı enerji üretiminin payı tüm dünyada hızla artmaktadır. Ülkemiz, bulunduğu coğrafi konumu nedeniyle hem güneş hem de rüzgâr enerjisi açısından büyük bir potansiyele sahiptir. Bu potansiyeli kullanma konusunda henüz istenen düzeye ulaşılamamıştır. Yine de son yıllarda kurulu gücün artmasıyla birlikte güneş enerjisinden elektrik üretimi çalışmaları hız kazanmıştır. Bu çalışmada, Türkiye’nin 2009-2019 yılları arasındaki kümülatif güneş enerjisi kurulu gücü verileri kullanılmıştır. Bu veriler ile 2020 yılı için kümülatif kurulu gücü tahmin etmek amacıyla Yapay Sinir Ağı (Artificial Neural Network - ANN) ve İki Yönlü Uzun-Kısa Vadeli Bellek (Bidirectional Long Short-Term Memory - BLSTM) yöntemleri kullanılmıştır. Kümülatif kurulu güç tahmin edilmiş ve sonuçlar karşılaştırılarak yorumlanmıştır.

Referanslar

  1. Ahmed, R., El Sayed, M., Gadsden, S. A., Tjong, J., and Habibi, S. (2014). Automotive internal-combustion-engine fault detection and classification using artificial neural network techniques. IEEE Transactions on vehicular technology, 64(1), 21-33.
  2. Altınsoy, M., and Bal, G. (2019). Uzun dönem rüzgar hızı tahmininde yapay sinir ağlarının kullanımı ve performans incelemesi. Mesleki Bilimler Dergisi (MBD), 8(1), 21-28.
  3. Altuntop, N., and Erdemir, D. (2013). Dünyada ve Türkiye’de Güneş Enerjisi ile İlgili Gelişmeler. Mühendis ve Makine, 54(639), 69-77.
  4. Ata, R. (2008). Otonom Bir Rüzgâr Türbininin Farklı Yüksekliklerdeki Enerji Eldesini YSA ile Analizi. Journal of the Faculty of Engineering & Architecture of Gazi University, 23(3), 523-529.
  5. Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE transactions on neural networks, 5(2), 157-166.
  6. Bilgili, M., Sahin, B., and Yasar, A. (2007). Application of artificial neural networks for the wind speed prediction of target station using reference stations data. Renewable Energy, 32, 2350–2360.
  7. Bin, Y., Yang, Y., Shen, F., Xie, N., Shen, H. T., and Li, X. (2018). Describing video with attention-based bidirectional LSTM. IEEE transactions on cybernetics, 49(7), 2631-2641.
  8. Bosch, J. L., Lopez, G., and Batlles, F. J. (2008). Daily solar irradiation estimation over a mountainous area using artificial neural network. Renewable Energy, 33, 1622–1628.
  9. BP British Petrol (2020a). Full Report - BP Statistical Review of World Energy 2020, https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf (01.09.2020).
  10. BP British Petrol (2020b). Renewable Energy - BP Statistical Review of World Energy 2020, https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-renewable-energy.pdf (01.09.2020).
  11. Byvatov, E., Fechner, U., Sadowski, J., and Schneider, G. (2003). Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. Journal of chemical information and computer sciences, 43(6), 1882-1889.
  12. Cantürk, S. (2018). Bir rüzgar çiftliğinden yapay sinir ağlarıyla kısa süreli elektrik üretim tahmini. Hacettepe University Graduate School of Science and Engineering, Master’s Thesis, Ankara.
  13. Ceylan, R., and Başer, S. (2014). Türkiye’de Petrol Tüketimi İle Reel GSYİH Arasındaki Uzun Dönem İlişkinin Johansen Eş-Bütünleşme Yöntemi İle Analiz Edilmesi. Business & Economics Research Journal, 5(2), 47-60.
  14. Çevik, S., Çakmak, R., and Altaş, İ. H. (2017). A day ahead hourly solar radiation forecasting by artificial neural networks: A case study for Trabzon province. 2017 international artificial intelligence and data processing symposium (IDAP), 16-17 September, Malatya, Turkey, 1-6.
  15. Deng, L., and Yu, D. (2014). Deep learning: methods and applications. Foundations and trends in signal processing, 7(3–4), 197-387.
  16. Dumitru, C. D., Gligor, A., and Enachescu, C. (2016). Solar photovoltaic energy production forecast using neural networks. Procedia Technology, 22, 808-815.
  17. Dumitru, C. D., and Gligor, A. (2017). Daily average wind energy forecasting using artificial neural networks. Procedia Engineering, 181, 829-836.
  18. Elizondo, D., Hoogenboom, G., and McClendon, R. W. (1994). Development of a neural network model to predict daily solar radiation. Agricultural and Forest Meteorology, 71(1-2), 115-132.
  19. Esfe, M. H., Saedodin, S., Sina, N., Afrand, M., and Rostami, S. (2015). Designing an artificial neural network to predict thermal conductivity and dynamic viscosity of ferromagnetic nanofluid. International Communications in Heat and Mass Transfer, 68, 50-57.
  20. Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., and Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115-118.
  21. ETKB (2020). Enerji ve Tabii Kaynaklar Bakanlığı Bilgi Merkezi “Güneş”. https://enerji.gov.tr/bilgi-merkezi-enerji-gunes (02.09.2020).
  22. Fadare, D. A. (2009). Modeling of solar energy potential in Nigeria using an artificial neural network model. Applied Energy, 86, 1410–1422.
  23. Filik, Ü. B., and Filik, T. (2017). Kısa-Dönem Rüzgâr Hızının Tahmininde Otoregresif ve Yapay Sinir Ağları Tabanlı Yeni Bir Hibrit Yaklaşım. Karaelmas Science and Engineering Journal, 7(2), 419-427.
  24. Gabralı, D., and Aslan, Z. (2020). Güneş Enerjisi Potansiyelinin Çoklu Lineer Regresyon ve Yapay Sinir Ağları ile Modellenmesi. AURUM Mühendislik Sistemleri ve Mimarlık Dergisi, 4(1), 23-36.
  25. Garg, N., Sharma, M. K., Parmar, K. S., Soni, K., Singh, R. K., and Maji, S. (2016). Comparison of ARIMA and ANN approaches in time-series predictions of traffic noise. Noise Control Engineering Journal, 64(4), 522-531.
  26. Graves, A., and Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural networks, 18(5-6), 602-610.
  27. Huang, C. J., and Kuo, P. H. (2018). A short-term wind speed forecasting model by using artificial neural networks with stochastic optimization for renewable energy systems. Energies, 11(10), 2777.
  28. Hughes, T., and Mierle, K. (2013). Recurrent neural networks for voice activity detection. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 26-31 May, Vancouver, Canada, 7378-7382.
  29. Karasu, S., Altan, A., Sarac, Z., and Hacioglu, R. (2017). Prediction of solar radiation based on machine learning methods. The journal of cognitive systems, 2(1), 16-20.
  30. Kaya, Ü., Caner, M., and Oğuz, Y. (2016). Rüzgar Türbin Modelleri Kullanarak Kastamonu İli Rüzgar İle Elektrik Üretim Potansiyeli Tahmini. Technological Applied Sciences, 11(3), 65-74.
  31. Kayıkcı, B., and Kılıç, F. Ç. (2019). Aydın İlinde Bir Konut için Hibrit Yenilenebilir Enerji Sistemi Fizibilitesi. 2019 International Congress of Energy Economy and Security, 06-07 April, İstanbul, Turkey, 213-225.
  32. Khatib, T., Mohamed, A., Sopian, K., and Mahmoud, M. (2012). Solar energy prediction for Malaysia using artificial neural networks. International Journal of Photoenergy, 2012, 1-16.
  33. Khosravi, A., Koury, R. N. N., Machado, L., and Pabon, J. J. G. (2018). Prediction of wind speed and wind direction using artificial neural network, support vector regression and adaptive neuro-fuzzy inference system. Sustainable Energy Technologies and Assessments, 25, 146-160.
  34. Kılıç, B., and Arabacı, E. (2015) Burdur İli Gelecekteki Rüzgar Hızı Değerlerini Yapay Sinir Ağları Metodu ile Tahmini. Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Dergisi, (2015 Special Issue), 45-50.
  35. Kılıç, F. Ç. (2015). Güneş enerjisi, Türkiye’deki son durumu ve üretim teknolojileri. Mühendis ve Makina, 56(671), 28-40.
  36. Kırbaş, İ. (2018). İstatistiksel metotlar ve yapay sinir ağları kullanarak kısa dönem çok adımlı rüzgâr hızı tahmini. Sakarya University Journal of Science, 22(1), 24-38.
  37. Kingma, D. P., and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
  38. Kiperwasser, E., and Goldberg, Y. (2016). Simple and accurate dependency parsing using bidirectional LSTM feature representations. Transactions of the Association for Computational Linguistics, 4, 313-327.
  39. Köse, B., Atila, Ü., Güneşer, M. T., and Recebli, Z. (2016). An Approach to Estimate Hourly & Daily Mean Wind Speed and Comparison with Artificial Neural Network. 10th International Clean Energy Symposium, 24-26 October, İstanbul, Turkey, 928-938.
  40. KPMG Enerji (2019). Sektörel Bakış. https://assets.kpmg/content/dam/kpmg/tr/pdf/2019/03/sektorel-bakis-2019-enerji.pdf. (05.09.2020).
  41. Lam, J. C., Wan, K. K. W., and Yang, L. (2008). Solar radiation modeling using ANNs for different climates in China. Energy Conversion and Management, 49, 1–11.
  42. LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
  43. Li, S., Wunsch, D. C., O’Hair, E. A., and Giesselmann, M. G. (2001). Using neural networks to estimate wind turbine power generation. IEEE Transactions on energy conversion, 16(3), 276-282.
  44. Li, Z., Rahman, S. M., Vega, R., and Dong, B. (2016). A hierarchical approach using machine learning methods in solar photovoltaic energy production forecasting. Energies, 9(1), 55-67.
  45. Mabel, M. C., and Fernandez, E. (2008). Analysis of wind power generation and prediction using ANN: A case study. Renewable energy, 33(5), 986-992.
  46. Mellit, A., Sağlam, S., and Kalogirou, S. A. (2013). Artificial neural network-based model for estimating the produced power of a photovoltaic module. Renewable Energy, 60, 71-78.
  47. MMO Makine Mühendisleri Odası (2014). Türkiye’nin Enerji Görünümü Oda Raporu. https://www.mmo.org.tr/sites/default/files/9aca139809cf620_ek_0.pdf (01.09.2020).
  48. MMO Makine Mühendisleri Odası (2020). Türkiye’nin Enerji Görünümü 2020 Oda Raporu. https://www.mmo.org.tr/sites/default/files/TEG-2020-00_Sunu%C5%9F_%C4%B0%C3%A7indekiler.pdf (01.09.2020).
  49. Mohandes, M., Rehman, S., and Halawani, T. O. (1998). Estimation of global solar radiation using artificial neural networks. Renewable Energy, 14, 179–184.
  50. Özden, S., and Öztürk, A. (2018). Yapay sinir ağları ve zaman serileri yöntemi ile bir endüstri alanının (ivedik OSB) elektrik enerjisi ihtiyaç tahmini. Bilişim Teknolojileri Dergisi, 11(3), 255-261.
  51. Özsoy, M. F., and Aydogan, H. (2017). Türkiye’de Rüzgâr Enerjisi Kurulu Gücün Yapay Sinir Ağı ile Tahmini. 1st International Symposium on Multidisciplinary Studies and Innovative Technoloogies, 02-04 November, Tokat, Turkey, 167-170.
  52. Park, D. C., El-Sharkawi, M. A., Marks, R. J., Atlas, L. E., and Damborg, M. J. (1991). Electric load forecasting using an artificial neural network. IEEE transactions on Power Systems, 6(2), 442-449.
  53. Reddy, K. S., and Ranjan, M. (2003). Solar resource estimation using artificial neural networks and comparison with other correlation models. Energy Conversion and Management, 44, 2519–2530.
  54. Rehman, S., and Mohandes, M. (2008). Artificial neural network estimation of global solar radiation using air temperature and relative humidity. Energy Policy, 36(2), 571-576.
  55. Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747.
  56. Salamon, J., and Bello, J. P. (2017). Deep convolutional neural networks and data augmentation for environmental sound classification. IEEE Signal Processing Letters, 24(3), 279-283.
  57. Senkal, O., and Kaleli, T. (2009). Estimation of solar radiation over Turkey using artificial neural network and satellite data. Applied Energy, 86, 1222–1228.
  58. Sözen, A. (2004). Use of artificial neural networks for mapping of solar potential in Turkey. Applied Energy, 77, 273–286.
  59. Sözen, A., Arcaklioglu, E., Ozalp, M., and Caglar, N. (2005). Forecasting based on neural network approach of solar potential in Turkey. Renewable Energy, 30, 1075–1090.
  60. Şahan, M., and Yüksel, O. (2016). Akdeniz bölgesine ait meteorolojik veriler kullanılarak yapay sinir ağları yardımıyla güneş enerjisinin tahmini. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 11(1), 61-71.
  61. Şenol, Ü. (2017). Rüzgar enerjisi ve rüzgar enerjisi potansiyelinin yapay sinir ağları yöntemiyle tahmini. Yozgat Bozok University Graduate School of Science, Master’s Thesis, Yozgat.
  62. Şenol, Ü., and Musayev, Z. (2017). Rüzgâr Enerjisinden Elektrik Üretiminin Yapay Sinir Ağları İle Tahmini. Bilge Uluslararası Fen ve Teknoloji Araştırmaları Dergisi, 1(1), 23-31.
  63. Taşcıkaraoğlu, A., and Uzunoğlu, M. (2011). Dalgacık Dönüşümü ve Yapay Sinir Ağları ile Rüzgâr Hızı Tahmini. Elektrik-Elektronik ve Bilgisayar Sempozyumu, 03-07 October, Elazığ, Turkey, 106-111.
  64. TEİAŞ Türkiye Elektrik İletim A.Ş. (2019). Yük Tevzi Dairesi Başkanlığı - Kurulu Güç Raporu - Aralık 2019. https://www.teias.gov.tr/tr-TR/kurulu-guc-raporlari (26.09.2020).
  65. TEİAŞ Türkiye Elektrik İletim A.Ş. (2020). Yük Tevzi Daire Başkanlığı Kurulu Güç Raporu-Temmuz 2020. https://www.teias.gov.tr/tr-TR/kurulu-guc-raporlari (26.09.2020).
  66. Ticknor, J. L. (2013). A Bayesian regularized artificial neural network for stock market forecasting. Expert Systems with Applications, 40(14), 5501-5506.
  67. Uğuz, S., Oral, O., and Çağlayan, N. (2019). PV Güç Santrallerinden Elde Edilecek Enerjinin Makine Öğrenmesi Metotları Kullanılarak Tahmin Edilmesi. International Journal of Engineering Research and Development, 11(3), 769-779.
  68. Yildirim, Ö. (2018). A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification. Computers in biology and medicine, 96, 189-202.
  69. Zhou, J., Wu, Y. Z., and Yan, G. (2005). Solar radiation estimation using artificial neural networks. Journal of Solar Energy, 26, 509–512.
  70. Zhou, P., Qi, Z., Zheng, S., Xu, J., Bao, H., and Xu, B. (2016). Text classification improved by integrating bidirectional LSTM with two-dimensional max pooling. arXiv preprint arXiv:1611.06639, 1-11.