ENDÜSTRİ 4.0 TEKNOLOJİK OLGUNLUK DÜZEYİNİN ANALİTİK HİYERARŞİ PROSESİ İLE MODELLENMESİ: GIDA VE İÇECEK İMALAT SEKTÖRÜ ÖRNEĞİ
Yayınlanmış 25.09.2020
Anahtar Kelimeler
- Industry 4.0,
- Maturity Model,
- Food and Beverage Manufacturing Sector,
- AHP,
- Analytic Hierarchy Process
- Endüstri 4.0,
- Olgunluk Modeli,
- Gıda ve İçecek İmalat Sektörü,
- AHP,
- Analitik Hiyerarşi Prosesi
Nasıl Atıf Yapılır
Nasıl Atıf Yapılır
Öz
Endüstri 4.0 dönüşümü, bileşenlerini oluşturan temel teknolojiler ile imalat sanayine, mevcut operasyonları ve süreçleri kökten değiştirecek yenilikler getirmektedir. Gıda ve içecek imalat sektöründe beklenen başlıca değişimler, artan verimlilik; artan gıda güvenliği; yüksek gıda kalitesi ve azalan atık miktarı olarak sıralanabilir. İşletmelerin Endüstri 4.0’dan elde edeceği faydayı maksimuma çıkarmak için, uygulamaların ölçülebilir ve karşılaştırılabilir olması gerekir. Endüstri 4.0 olgunluk modelleri dönüşüm sürecinde standartlaştırma ve karşılaştırma için önemli göstergeler sunmaktadır. Bu çalışmada temel Endüstri 4.0 teknolojilerinin kullanımını Analitik Hiyerarşi Prosesi yöntemi ile değerlendiren, sektöre özel bir olgunluk modeli önerilmektedir. Çalışmanın sonuçlarına göre gıda ve içecek imalat sektörü için en önemli teknolojiler Otonom Robotlar ve Siber Güvenlik olarak belirlenmiştir. Bu iki teknolojiyi, sırasıyla Büyük Veri Analitiği ve Eklemeli İmalat Sistemleri takip etmektedir. Çalışmada bir Endüstri 4.0 olgunluk ölçeği sunulmuş olup, örnek uygulama ile gıda imalatçısı bir işletmenin bu ölçek üzerinden Endüstri 4.0 olgunluğu hesaplanmıştır.
Referanslar
- Alkan, M.A., 2020, Gıda Sektörü ve Endüstri 4.0, Endüstri 4.0 Platformu https://www.endustri40.com/gida-sektoru-ve-endustri-4-0/, erişim tarihi: 24.06.2020
- Akdil, K. Y., Ustundag, A., & Cevikcan, E. (2018). Maturity and readiness model for industry 4.0 strategy. In Industry 4.0: Managing the digital transformation (pp. 61-94). Springer, Cham.
- Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer networks, 54(15), 2787-2805.
- Bibby, L., & Dehe, B. (2018). Defining and assessing industry 4.0 maturity levels–case of the defence sector. Production Planning & Control, 29(12), 1030-1043.
- Boston Danışma Grubu (BCG), (2020). Embracing Industry 4.0 rediscovering growth, https://www.bcg.com/capabilities/operations/embracing-Industry-4.0-rediscovering-growth.aspx.
- Carmigniani, J., Furht, B., Anisetti, M., Ceravolo, P., Damiani, E., & Ivkovic, M. (2011). Augmented reality technologies, systems and applications. Multimedia tools and applications, 51(1), 341-377.
- Castelo-Branco, I., Cruz-Jesus, F., & Oliveira, T. (2019). Assessing Industry 4.0 readiness in manufacturing: Evidence for the European Union. Computers in Industry, 107, 22-32.
- Comuzzi, M., & Patel, A. (2016). How organisations leverage big data: A maturity model. Industrial Management & Data Systems, 116(8), 1468-1492.
- Dalenogare, L. S., Benitez, G. B., Ayala, N. F., & Frank, A. G. (2018). The expected contribution of Industry 4.0 technologies for industrial performance. International Journal of Production Economics, 204, 383-394.
- Dilberoglu, U. M., Gharehpapagh, B., Yaman, U., & Dolen, M. (2017). The role of additive manufacturing in the era of industry 4.0. Procedia Manufacturing, 11, 545-554.
- Dillon, T., Wu, C., & Chang, E. (2010). Cloud computing: issues and challenges. In 2010 24th IEEE international conference on advanced information networking and applications (pp. 27-33). Ieee.
- Erbay, H., & Yıldırım, N. (2018, August). Technology Selection for Digital Transformation: A Mixed Decision Making Model of AHP and QFD. In The International Symposium for Production Research (pp. 480-493). Springer, Cham.
- Fırat, S., & Fırat, O. (2017). Gıda ve İçecek Sektöründe Endüstri 4.0 Devrimi: Otomasyon ve Robotlar. ST Robot Yatırımları, 216.
- Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International journal of information management, 35(2), 137-144.
- Gökalp, E., Şener, U., & Eren, P. E. (2017, October). Development of an assessment model for industry 4.0: industry 4.0-MM. In International Conference on Software Process Improvement and Capability Determination (pp. 128-142). Springer, Cham.
- Gunal, M. M. (Ed.). (2019). Simulation for Industry 4.0: Past, Present, and Future. Springer.
- Huang, Y. L., & Sun, W. L. (2018, July). An ahp-based risk assessment for an industrial iot cloud. In 2018 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C) (pp. 637-638). IEEE.
- Jaganathan, S., Erinjeri, J. J., & Ker, J. I. (2007). Fuzzy analytic hierarchy process based group decision support system to select and evaluate new manufacturing technologies. The International Journal of Advanced Manufacturing Technology, 32(11-12), 1253-1262.
- Jazdi, N. (2014, May). Cyber physical systems in the context of Industry 4.0. In 2014 IEEE international conference on automation, quality and testing, robotics (pp. 1-4). IEEE.
- Klötzer, C., & Pflaum, A. (2017). Toward the development of a maturity model for digitalisation within the manufacturing industry’s supply chain.
- Lichtblau, K., Stıch, V., Bertenrath, R., Blum, R., Bleider, M., & Millack, A. (2017). IMPULS, Industry 4.0 readiness, VDMA.
- Lu, Y. (2017). Industry 4.0: A survey on technologies, applications and open research issues. Journal of industrial information integration, 6, 1-10.
- Luque, A., Peralta, M. E., De Las Heras, A., & Córdoba, A. (2017). State of the Industry 4.0 in the Andalusian food sector. Procedia Manufacturing, 13, 1199-1205.
- Luthra, S., & Mangla, S. K. (2018). Evaluating challenges to Industry 4.0 initiatives for supply chain sustainability in emerging economies. Process Safety and Environmental Protection, 117, 168-179.
- Ly, P. T. M., Lai, W. H., Hsu, C. W., & Shih, F. Y. (2018). Fuzzy AHP analysis of Internet of Things (IoT) in enterprises. Technological Forecasting and Social Change, 136, 1-13.
- Mittal, S., Khan, M. A., Romero, D., & Wuest, T. (2018). A critical review of smart manufacturing & Industry 4.0 maturity models: Implications for small and medium-sized enterprises (SMEs). Journal of manufacturing systems, 49, 194-214.
- Nemeth, T., Ansari, F., Sihn, W., Haslhofer, B., & Schindler, A. (2018). PriMa-X: A reference model for realising prescriptive maintenance and assessing its maturity enhanced by machine learning. Procedia CIRP, 72, 1039-1044.
- Ötleş S. ve Özyurt, V.H. (2016). https://egeplm.ege.edu.tr/files/egeplm/icerik/endustri40_dunya_gida.pdf, Erişim tarihi: 24.06.2020.
- Özçelik, T. O., Erkollar, A., & Cebeci, H. I. (2019). Bir İmalat İşletmesi için Endüstri 4.0 (Dijital) Olgunluk Seviyesi Belirleme Uygulaması. 5th International Management Information Systems Conference, Ankara.
- Özdemir, Ö.ve Özdemir, E. G. Endüstri 4.0 ve yiyecek içecek işletmelerindeki yansımaları. (2019) Nevşehir HBV Üniversitesi Turizm Fakültesi, IV. International Gastronomy Tourism Studies Congress, 87-93.
- Özenir, İ., & Nakıboğlu, G. (2019). Sürdürülebilir üretimde Endüstri 4.0’ın yeri. Business & Management Studies: An International Journal, 7(5), 2248-2281.
- Pacchini, A. P. T., Lucato, W. C., Facchini, F., & Mummolo, G. (2019). The degree of readiness for the implementation of Industry 4.0. Computers in Industry, 113, 103125.
- Porter, K., Phipps, J., Szepkouski, A., Abidi, S.(2015). 3D opportunity serves it up: Additive manufacturing and food. Deloitte University Press. https://www2.deloitte.com/content/dam/insights/us/articles/3d-printing-in-the-food-industry/DUP_1147-3D-opportunity-food_MASTER1.pdf. Erişim tarihi: 26.06.2020
- Pricewaterhouse Coopers, P. (2016). Industry 4.0-Enabling Digital Operations Self Assessment. https://i40-self-assessment.pwc.de/i40/landing/, Erişim tarihi: 19.06.2020.
- Proença, D., & Borbinha, J. (2016). Maturity models for information systems-A state of the art. Procedia Computer Science, 100, 1042-1049.
- Saaty, R. W. (1987). The analytic hierarchy process—what it is and how it is used. Mathematical modelling, 9(3-5), 161-176.
- Santos, R. C., & Martinho, J. L. (2019). An Industry 4.0 maturity model proposal. Journal of Manufacturing Technology Management.
- Saucedo-Martínez, J. A., Pérez-Lara, M., Marmolejo-Saucedo, J. A., Salais-Fierro, T. E., & Vasant, P. (2018). Industry 4.0 framework for management and operations: a review. Journal of ambient intelligence and humanized computing, 9(3), 789-801.
- Schumacher, A., Erol, S., & Sihn, W. (2016). A maturity model for assessing Industry 4.0 readiness and maturity of manufacturing enterprises. Procedia Cirp, 52(1), 161-166.
- Schumacher, A., Nemeth, T., & Sihn, W. (2019). Roadmapping towards industrial digitalisation based on an Industry 4.0 maturity model for manufacturing enterprises. Procedia Cirp, 79, 409-414.
- Sevinc, A., Gür, Ş., & Eren, T. (2018). Analysis of the difficulties of SMEs in industry 4.0 applications by analytical hierarchy process and analytical network process. Processes, 6(12), 264.
- Sony, M., & Naik, S. (2019). Key ingredients for evaluating Industry 4.0 readiness for organisations: a literature review. Benchmarking: An International Journal.
- Timor, M. (2011). Analitik Hiyerarşi Prosesi. Türkmen Kitabevi, Ankara.
- TÜSİAD, 2016, Türkiye’nin Sanayi 4.0 Dönüşümü, https://tusiad.org/tr/yayinlar/raporlar/item/8671-turkiyenin-sanayi-40-donusumu
- Yaşar, E., & Ulusoy, T. (2019). Industry 4.0 and Turkey. Business & Management Studies: An International Journal, 7(1), 24-41.