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Renewable energy sources play an essential role in sustainable development. The 
share of renewable energy-based energy generation is rapidly increasing all over the world. 
Turkey has a great potential in terms of both solar and wind energy due to its geographical 
location. The desired level has not yet been reached in using this potential. Nevertheless, with 
the increase in installed power in recent years, electricity generation from solar energy has 
gained momentum. In this study, data on cumulative installed solar power in Turkey in the 
2009-2019 period were used. Artificial Neural Network (ANN) and Bidirectional Long 
Short-Term Memory (BLSTM) methods were selected to predict the cumulative installed 
solar power for 2020 with these data. The cumulative installed power was predicted, and the 
results were compared and interpreted. 
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TÜRKİYE İÇİN GÜNEŞ ENERJİSİ KURULU GÜCÜNÜN YAPAY SİNİR AĞI VE 

İKİ YÖNLÜ UZUN- KISA VADELİ BELLEK KULLANILARAK TAHMİNİ 
 

ÖZ 
 

Anahtar Kelimeler:  

Yenilenebilir Enerji, 

Güneş Enerjisi, 

Tahmin, 

Yapay Sinir Ağı 

 

JEL Kodları:         

O20, Q42, Q47 

 
Sürdürülebilir bir kalkınma için yenilenebilir enerji kaynakları önemli bir rol 

oynamakta ve yenilenebilir enerji kaynaklı enerji üretiminin payı tüm dünyada hızla 
artmaktadır. Ülkemiz, bulunduğu coğrafi konumu nedeniyle hem güneş hem de rüzgâr 
enerjisi açısından büyük bir potansiyele sahiptir. Bu potansiyeli kullanma konusunda henüz 
istenen düzeye ulaşılamamıştır. Yine de son yıllarda kurulu gücün artmasıyla birlikte güneş 
enerjisinden elektrik üretimi çalışmaları hız kazanmıştır. Bu çalışmada, Türkiye’nin 2009-
2019 yılları arasındaki kümülatif güneş enerjisi kurulu gücü verileri kullanılmıştır. Bu 
veriler ile 2020 yılı için kümülatif kurulu gücü tahmin etmek amacıyla Yapay Sinir Ağı 
(Artificial Neural Network - ANN) ve İki Yönlü Uzun-Kısa Vadeli Bellek (Bidirectional 
Long Short-Term Memory - BLSTM) yöntemleri kullanılmıştır. Kümülatif kurulu güç 
tahmin edilmiş ve sonuçlar karşılaştırılarak yorumlanmıştır.                               

 
 

 

1. INTRODUCTION 

The energy needs of countries are increasing day by day. As a result of 

increasing consumption, fossil energy resources in the world are rapidly running out. 

Nevertheless, fossil energy resources still have a considerable share in primary energy 

consumption across the world. Primary energy consumption by sources in 2018 and 

2019 is shown for the entire world in Figure 1 and Figure 2. As can be seen from the 

Figures, the primary energy consumption originating from fossil energy resources is 

over 80% in both years. Moreover, Turkey’s primary energy consumption by sources 

in 2018 and 2019 is shown in Table 1.  Hydroelectric energy data are not given under 

renewable energy in the reference. 
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Figure 1. Primary energy consumption in EJ by sources in 2018 (BP, 2020a:9) 

Because of the rapid consumption of these resources, renewable energy sources 

are essential. Besides, as it is known, fossil energy resources cause global warming, 

leading to various natural disasters. It is crucial to turn to clean, reliable and 

sustainable renewable energy sources instead of fossil energy resources, which are 

known to cause significant damage to the environment (Kılıç, 2015:29). 

 

Figure 2. Primary energy consumption in EJ by sources in 2019 (BP, 2020a:9) 
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Table 1. Turkey’s primary energy consumption in EJ by sources in 2018 and 2019 

(BP, 2020a:9) 

Year Oil Natural Gas Coal Nuclear 
Energy 

Hydroelectric Renewable 
Energy 

Total 

2018 2.00 1.70 1.71 - 0.54 0.34 6.29 

2019 2.03 1.56 1.70 - 0.79 0.41 6.49 

 

In addition to the damage caused by fossil energy resources to the environment, 

our country is heavily dependent on foreign resources in energy supply. Since the 

1980s, imported energy resources have been used to meet energy needs. Moreover, 

high-cost investments in terms of fossil-based imports have come besides. Thus, 

dependency on foreign resources in energy supply reached a very high level of 72.4% 

in 2018. Consequently, the cost to our country was $ 43 billion in 2018 and $ 41.6 billion 

in 2019 (MMO, 2020). It is clear that this situation creates a vast burden on our 

country’s economy and leads to an increase in the current account deficit. 

On the other hand, renewable energy costs are decreasing day by day, thanks 

to technological developments (KPMG, 2019:3). Furthermore, due to its geographical 

location, Turkey is highly advantageous in solar and wind energy production (Kayıkcı 

and Kılıç, 2019:213), and increasing the use of these resources will decrease external 

dependency. (Ceylan and Başer, 2014:57). 

Turkey has a high solar energy potential thanks to its location in the so-called 

sunbelt (Altuntop and Erdemir, 2013:70). Distribution of Turkey’s total solar energy 

potential by regions and months is shown in Table 2 and Table 3. Table 2 shows the 

total solar energy potential in kWh/m2 and sunshine duration hours per year for each 

region. Table 3 shows the total solar energy potential in kcal/cm2 and kWh/m2 and 

sunshine duration hours per month for Turkey. 
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Table 2. Distribution of Turkey’s Solar Energy Potential by Regions (MMO, 2014:167) 

Region Total Solar Energy 

(kWh/m2-year) 

Sunshine Duration 

(hour/year) 

Southeastern Anatolia 1460 2993 

Mediterranean 1390 2956 

Eastern Anatolia 1365 2664 

Central Anatolia 1314 2628 

Aegean 1304 2738 

Marmara 1168 2409 

Black Sea 1120 1971 
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Table 3. Distribution of Turkey’s Total Solar Energy Potential by Months (MMO, 

2014:166) 

Months Monthly Total Solar Energy Sunshine Duration 

(hour/month) 
kcal/cm2-month kWh/m2-month 

January 4.45 51.75 103.0 

February 5.44 63.27 115.0 

March 8.31 96.65 165.0 

April 10.51 122.23 197.0 

May 13.23 153.86 273.0 

June 14.51 168.75 325.0 

July 15.08 175.38 365.0 

August 13.62 158.40 343.0 

September 10.60 123.28 280.0 

October 7.73 89.90 214.0 

November 5.23 60.82 157.0 

December 4.03 46.87 103.0 

Total 112.74 1311.0 2640.0 

Average 308.0 kcal/cm2-day 3.6 kWh/m2-day 7.2 hour/day 
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However, not using this potential effectively causes solar energy not to be 

counted as a solution alternative to the problems above. Efforts should be made to use 

solar energy effectively and sustainably in our country (Kılıç, 2015:30). 

Generally, photovoltaic (PV) solar power systems and concentrated solar power 

(CSP) systems are used in electricity generation from solar energy (ETKB, 2020). 

Turkey has 6901 solar power plants by the end of 2019, and the cumulative 

installed solar power is 5996 MW (TEİAŞ, 2019; BP, 2020b:A2). Turkey’s cumulative 

installed solar power by years is shown in Table 4. 

Table 4. Turkey's cumulative installed solar power by years (BP, 2020b:A2) 

Years 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 

Cumulative  

installed  

solar 

power (MW) 

5 6 7 12 19 41 250 834 3422 5064 5996 

  

 Table 5 shows the distribution of Turkey’s electricity generation in terawatt-

hours by energy sources in 2018 and 2019.  

Table 5. Electricity generation in Turkey by energy sources (BP:2020a:61) 

Year Oil Natural Gas Coal Nuclear Energy Hydroelectric Renewable 

Energy 

Other Total 

Wind Solar Other 

2018 0.3 92.5 113.2 - 59.9 19.9 7.8 10.1 1.0 304.8 

2019 0.2 58.1 114.6 - 89.2 21.7 10.9 12.7 1.1 308.5 
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Both Table 4 and Table 5 show that there are developments in the field of solar 

energy. However, these developments are insufficient. Our country, which has a high 

potential for solar energy, will reduce its external dependency and remove many 

uncertainties in the future due to fossil energy resources by increasing installed solar 

power and using our solar potential better. 

Prediction plays a vital role in the field of energy. Various studies in the 

literature have made predictions using ANN methods. Elizondo, Hoogenboom and 

McClendon (1994) developed an ANN model to predict daily solar radiation. 

Mohandes, Rehman and Halawani (1998) estimated global solar radiation using 

ANNs. Li, Wunsch, O’Hair and Giesselmann (2001) estimated wind turbine energy 

production using ANNs. Reddy and Ranjan (2003) estimated the average daily and 

hourly values of global solar radiation using ANNs and compared this with other 

correlation models. Sözen (2004) mapped Turkey’s solar potential using ANNs. Sözen, 

Arcaklioglu, Ozalp and Caglar (2005) forecasted the solar potential of Turkey with 

ANNs. Zhou, Wu and Yan (2005) estimated solar radiation using ANNs. Bilgili, Sahin 

and Yasar (2007) used ANNs to predict wind speed at the target station with reference 

station data. Ata (2008) analyzed the energy yield of an autonomous wind turbine at 

different heights using ANNs. Rehman and Mohandes (2008) estimated global solar 

radiation with ANNs using air temperature and relative humidity. Lam, Wan and 

Yang (2008) modelled solar radiation with ANNs for different climates of China. 

Bosch, Lopez and Batlles (2008) estimated daily solar radiation in a mountainous 

region using ANNs. Mabel and Fernandez (2008) predicted wind power generation. 

Senkal and Kaleli (2009) estimated solar radiation in Turkey using ANNs and satellite 

data. Fadare (2009) modelled the solar energy potential in Nigeria using an ANN 

model. Taşcıkaraoğlu and Uzunoğlu (2011) predicted wind speed by using the wavelet 

transform (WT) and ANNs. Khatib, Mohamed, Sopian and Mahmoud (2012) predicted 

solar power generation for Malaysia using ANNs. Mellit, Sağlam and Kalogirou (2013) 

estimated the energy to be produced by a PV module with an ANN-based model. Kılıç 

and Arabacı (2015) predicted future wind speed values for Burdur province by using 

ANN method. Kaya, Caner and Oğuz (2016) determined the wind potential of 

Kastamonu province by modelling six different wind turbines and using ANNs and 
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adaptive neuro-fuzzy inference systems. Dumitru, Gligor and Enachescu (2016) 

forecasted photovoltaic energy production using ANNs. Li, Rahman, Vega and Dong 

(2016) developed a hierarchical approach for forecasting photovoltaic energy 

production using machine learning methods. Şahan and Yüksel (2016) predicted solar 

energy using ANNs with meteorological data from the Mediterranean region. Şenol 

and Musayev (2017) predicted electricity generation from wind energy with ANNs. 

Filik and Filik (2017) developed a new hybrid approach based on autoregressive and 

ANNs for prediction of short-term wind speed. Özsoy and Aydogan (2017) used 

ANNs for predicting installed wind power in Turkey. Şenol (2017) predicted wind 

energy and wind energy potential using ANNs in his master’s thesis. Dumitru and 

Gligor (2017) forecasted the daily average energy production for wind energy with 

ANNs. Karasu, Altan, Sarac and Hacioglu (2017) predicted solar radiation with 

machine learning methods. Çevik, Çakmak and Altaş (2017) made a forecast of hourly 

solar radiation for Trabzon province a day ahead with the help of ANNs. Köse, Atila, 

Güneşer and Recebli (2018) developed a new analytical method for estimating hourly 

and daily wind speed and compared the results with estimates obtained with ANNs. 

Kırbaş (2018) made a short-term multi-step wind speed prediction using statistical 

methods and ANNs. Cantürk (2018) predicted electricity from a wind farm with ANNs 

in his master’s thesis. Altınsoy and Bal (2019) used ANNs in long-term wind speed 

predictions and conducted a performance review. Huang and Kuo (2018) forecasted 

short-term wind speed with ANNs. Uğuz, Oral and Çağlayan (2019) predicted the 

energy to be obtained from PV power plants using machine learning methods. Gabralı 

and Aslan (2020) estimated short and medium-term solar radiation in Istanbul 

Büyükçekmece District with ANNs. 

In this study, cumulative installed solar power was predicted for Turkey with 

ANN and BLSTM. As far as we reviewed, there is no such study using these two 

methods in order to predict the cumulative installed solar power for Turkey. It was 

aimed to assist in energy production planning for the future and guide in the correct 

direction of energy investments to be made. 
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2. ARTIFICIAL NEURAL NETWORK 

Various prediction methods are used in the literature. In this study, it is aimed 

to predict the cumulative installed solar power by using ANN and BLSTM. ANNs are 

an artificial intelligence and machine learning method inspired by biological nerve 

cells (Esfe, Saedodin, Sina, Afrand and Rostami, 2015:51). ANNs generally consist of 

an input layer, one or multiple hidden layers, and an output layer, neurons in these 

layers and weights. Figure 3 shows a network with 24 neurons. This method is used 

for prediction and classification from existing data. For this purpose, the system is 

trained with real data and then it is expected to produce outputs suitable for test data. 

ANN is used for classification and prediction purposes in many areas such as skin 

cancer level determination (Esteva, Kuprel, Novoa, Ko, Swetter, Blau and Thrun, 

2017), detection of automobile engine faults (Ahmed, El Sayed, Gadsden, Tjong and 

Habibi, 2014), drug classification (Byvatov, Fechner, Sadowski and Schneider, 2003), 

electric load estimation (Park, El-Sharkawi, Marks, Atlas and Damborg, 1991), stock 

market forecast (Ticknor, 2013), wind speed estimation (Khosravi, Koury, Machado 

and Pabon, 2018) and electricity energy demand forecasting (Özden and Öztürk, 2018) 

because of its adaptability, non-linearity and arbitrary function mapping ability (Garg, 

Sharma, Parmar, Soni, Singh and Maji, 2016).  

 

 Figure 3. Network in structure 3-24-1 
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Another popular algorithm inspired by ANNs is deep learning (networks) 

algorithms. These algorithms are used in many areas such as image processing, 

classification and natural language processing (Deng and Yu, 2014:202). These 

methods, which we can call deep learning networks, are different from classical ANNs 

in various ways, such as layer numbers (LeCun, Bengio and Hinton, 2015:436). 

Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) are the 

most well-known deep learning algorithms. RNNs can handle input sequences of 

sequential length and time series problems, but gradient can descend or ascend in the 

training process (Salamon and Bello, 2017, Bengio, Simard and Frasconi, 1994). This 

can cause gradient loss issues in training and cause learning problems not to find the 

correct relationships in the sequences of the RNN model. This is now LSTM which is 

a particular version of the regular RNN. Employees such as LSTM speech recognition 

(Hughes and Mierle, 2013), signal works (Yildirim, 2018), text classification (Zhou, Qi, 

Zheng, Xu, Bao and Xu, 2016), video identification (Bin, Yang, Shen, Xie, Shen and Li, 

2018) are used. Normal (One Way) LSTMs can fail in sequential operations such as 

time series since they do one operation (Graves and Schmidhuber, 2005). For this 

reason, BLSTMs are a connection and run two LSTMs in the input sequence instead of 

one LSTM in problems where the input sequence is all time steps (Figure 4). The first 

LSTM can be made over the input sequence (from past to future) and the second LSTM 

operates in the opposite direction (from the future to the past) on the copy of the input 

sequence (Kiperwasser and Goldberg, 2016:316). Thus, it can enable the system to learn 

the problem faster and more completely.  

 

Figure 4. BLSTM structure 
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3. IMPLEMENTATION 

In this study, Turkey’s data on cumulative installed solar power given in Table 

4 for the period 2009-2019 were used. The data were collected from an online database. 

Therefore, an Ethics Committee Permission was not required in this study. Since the 

limited and one-dimensional data available are a time series, it is necessary to make 

use of historical data for prediction. In order to get good results, the data were 

transformed into a series with three elements. ANN and BLSTM methods were used 

on these series, which gives good results in prediction processes. In both methods, the 

cumulative installed solar power values in megawatts of consecutive years were used 

as three inputs (I1, I2, I3), and the cumulative installed solar power value of the year 

after these consecutive years as the only output (O) (Table 6). The values of I1, I2, I3, 

and O in the first row are the cumulative installed solar power data for the years 2009, 

2010, 2011, and 2012 in Table 4, respectively. The second input value in the first row is 

used as the first input value in the second row. The third input value in the first row 

is used as the second input value in the second row. The output value in the first row 

is used as the third input value in the second row. This shifting is continued for the 

remaining six rows. In other words, the values in the first row are from 2009, 2010, 

2011, and 2012, respectively, while those in the second row are 2010, 2011, 2012, and 

2013. This process is continued until 2019. The aim here is to produce data series to be 

applied in the method. 
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Table 6. Three-element data set of installed solar power values for the period 2009-

2019 

I1 I2 I3 O 

5 6 7 12 

6 7 12 19 

7 12 19 41 

12 19 41 250 

19 41 250 834 

41 250 834 3422 

250 834 3422 5064 

834 3422 5064 5996 

 

The ANN method includes three inputs, one output and one hidden layer (3-

24-1) with 24 neurons. It was carried out with 200 epochs during ANN training, and 

from the data for the years 2016, 2017 and 2018, a value of 5995.989 was estimated for 

the actual value 5996.  A relative error has been found -0.0002% after comparing both 

values (Table 7). 

BLSTM method was trained with 50 epochs, and Adam optimizer was used. 

Instead of the classical stochastic gradient reduction method, Adam is a more efficient, 

adaptive optimization algorithm, i.e. it updates the learning rate for each parameter 

(Kingma and Ba, 2014:1, Ruder, 2016:7). 

 By this method, a value of 6146.651 was estimated for the actual value 5996 for 

2019.  A relative error has been found 2.5125% after comparing both values (Table 7). 
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Table 7. Prediction for 2019 from the data for the period 2016-2018 

Methodology 2016 2017 2018 2019 

Actual values in MW 834 3422 5064 5996 

ANN Prediction in MW (Relative Error -0.0002%) 5995.989 

Bidirectional LSTM Prediction in MW (Relative Error 2.5125%) 6146.651 

 
Moreover, the ANN method is implemented on the data for the period 2016-

2018 in order to predict the cumulative installed solar power value for 2019 with 

different network structures. As shown in Table 8, the best prediction value is obtained 

by the 3-24-1 network structure. 

Table 8. Prediction for 2019 with different network structures 

Network Structure Prediction in MW Relative Error % 

3-5-3-1 6009.53  0.2257 

3-5-5-1 5627.861 -6.1397 

3-3-5-1 5876.123 -1.9993 

3-10-5-1 5805.749 -3.1730 

3-5-10-1 5601.440 -6.5804 

3-5-1 5674.155 -5.3677 

3-8-1 5992.897 -0.0518 

3-11-1 5995.281 -0.0120 

3-14-1 5995.632 -0.0061 

3-17-1 5995.931 -0.0012 

3-20-1 5995.930 -0.0012 

3-24-1 5995.989 -0.0002 
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ANN and BLSTM methods were used to estimate the value for 2020 from the 

data for 2017, 2018, and 2019 with the same training and optimization parameters.  The 

cumulative installed solar power value was predicted as 6499.992 for the year 2020 by 

the ANN method and as 6617.015 by the BLSTM method (Table 9). Although the actual 

value for 2020 is unknown, the cumulative installed solar power is 6294.7 MW by the 

end of August 2020 (TEİAŞ, 2020). 

Table 9. Prediction for 2020 from the data for the period 2017-2019 

Year 2017 2018 2019 2020 

Actual Value 3422 5064 5996 - 

ANN Prediction 6499.992 

BLSTM Prediction 6617.015 

 

Furthermore, the ANN method is implemented on the data for the period 2017-

2019 in order to predict the cumulative installed solar power value for 2020 with 

different network structures. The results are given in Table 10.  
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Table 10. Prediction for 2020 with different network structures 

Network Structure Prediction in MW 

3-5-5-1 6341.412 

3-3-5-1 6442.569 

3-10-5-1 6367.772 

3-5-10-1 6356.365 

3-5-1 6230.179 

3-8-1 6375.942 

3-11-1 6499.175 

3-14-1 6499.123 

3-17-1 6499.834 

3-20-1 6499.925 

3-24-1 6499.992 
 

In order to compare the results of the ANN and BLSTM methods, other 

prediction methods such as Support Vector Regression (SVR), Decision Tree 

Regression (DTR) and Random Forest Regression (RFR) are implemented on the same 

data with optimized parameters in order to predict the cumulative installed solar 

power value for 2020 (Table 11). 
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Table 11. Comparison of the results obtained from ANN and BLSTM methods with 

the results of other prediction methods 

Prediction Method Prediction for 2019 

(Actual value is 5996 MW) 

Prediction for 2020 

(Actual value is unknown) 

ANN 5995.989 6499.992 

BLSTM 6146.651 6617.015 

SVR 2945.31 3429.96 

DTR 5064 5996 

RFR 4336.26 5490.98 
 

As shown in Table 11, the ANN method yielded the best prediction result for 

2019 when compared with other prediction methods. Since the value for 2020 is 

unknown, it can not be determined which method gives the best result. 

4. CONCLUSION 

In this study, the cumulative installed solar power was predicted for 2020 by 

using ANN and BLSTM. The results show that the ANN method yields a better result 

than the BLSTM method for 2019. The predicted value for 2020 may not be reached 

due to the pandemic, as the pandemic has negatively impacted energy investments in 

every field. Investments in solar energy in Turkey are expected to increase with the 

decline in the impact of the pandemic. Turkey has great potential in solar energy. 

Considering this potential, it should be aimed to produce their own energy in 

uncultivated land, on house and company roofs that are exposed to the sun.  
In future research, by considering the solar power capacity and the capacity of 

other renewable energy sources in Turkey, their contributions to the national economy 

can be analyzed financially by years, and the contribution of solar energy to the 

economy can be estimated over the years with the machine learning methods.  
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